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Abstract

The k-cut problem asks, given a graph G and a positive integer k, to find a minimum-weight
set of edges whose removal splits G into at least k components. We give the first polynomial-
time algorithm with approximation factor 2 − ε (with constant ε > 0) for the k-cut problem
on planar and minor-free graphs. Applying more complex techniques, we further improve our
method and present a polynomial-time approximation scheme in both planar and minor-free
graphs. Despite persistent effort, to the best of our knowledge, this is the first improvement for
the k-cut problem over standard approximation factor of 2 in any major class of graphs.

1 Introduction

In the k-cut problem, given an undirected graph with edge weights, the goal is to find a minimum-
weight set of edges whose removal splits the graph into at least k components. The problem is
sometimes also called the k-way cut problem or the multi-component cut. This problem is a natural
generalization of the minimum cut problem in which we want to find a minimum-weight set of
edges whose removal splits the graph into two components.

Goldschmidt and Hochbaum [13] proved that the k-cut problem is NP-hard when k is part of

the input. In the same work, they provided an O(nk
2
) algorithm for the k-cut problem which is

polynomial for every fixed k. Better algorithms have been proposed in a series of works [15, 29, 17,
28]. As of today, the best algorithm for the minimum k-cut problem is by Thorup [28], and has the
running time of O(n2k log n). Despite these improvements, this problem is proven to be W[1]-hard
when k is taken as a parameter [10] which shows that this problem does not have a FPT algorithm
unless P = NP.

In terms of approximation algorithms, several approximation algorithms are known for this
problem [26, 21, 24, 32, 30], however the approximation ratio of none of them is better than
2 − o(1). In fact, a very recent result by Manurangsi [20] shows that this problem is NP-hard to
approximate to within 2− ε factor assuming Small Set Expansion Hypothesis. Additionally, to the
best of our knowledge, prior to this work, there was no approximation algorithm with a ratio better
than 2 for any major class of graphs. It is also worth mentioning that a recent work by Gupta
et al. [14] showed that using an FPT algorithm the approximation factor of 2 can be beaten in the
k-cut problem. They showed that there exists a 2 − ε approximation algorithm that runs in time
2O(k6)Õ(n4).
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In this paper, we first show that surprisingly the approximation guarantee of a natural greedy
algorithm is 2 − ε in planar graphs as well as graphs excluding a fixed minor, for some positive
constant ε. Later, we show how our method can be extended to derive a PTAS for the k-cut
problem in minor-free graphs. This is the first result that beats the approximation factor of 2 in a
polynomial-time for a major class of graphs.

Theorem 1.1. The approximation ratio of the greedy algorithm presented as Algorithm 1 is 1.9988
for planar graphs and 2− ε for H-minor-free graphs where ε > 0 is a constant depending on H.

The above theorem is proved in Section 3. Then we move on to the result with the better
guarantee. The following is proved in Section 4.

Theorem 1.2. There is a polynomial-time approximation scheme (PTAS) for the k-cut problem in
minor-free graphs.

We work with the notion of the “density of cuts” which is the weight of a cut divided by its
separation degree. Although the density of a minimum cut could be twice the density of the optimal
solution, we show that the density of cuts with a larger separation degree converges to the density
of the optimal solution in planar and minor-free graphs. Interestingly, the same does not hold in
general graphs, where the density of arbitrary large cuts may be as much as a factor 2− o(1) of the
density of the optimal solution.

We show that a natural greedy algorithm that repeatedly picks a minimum-density split with
a constant separation degree achieves an approximation ratio better than 2. First, in order to
introduce and highlight our main ideas, we consider the greedy algorithm which repeatedly picks a
minimum-density split with a separation degree of at most 3 and show that its approximation ratio
is 2− ε in minor-free graphs. Subsequently, we generalize our method to derive a polynomial-time
approximation scheme (PTAS) in minor-free graphs. Saran and Vazirani [26] considers a similar
greedy algorithm which successively removes the edges of a minimum cut. They showed that the
approximation ratio of the greedy algorithm is 2 − 2/k in general graphs. Later, Xiao et al. [30]
generalized this method by repeatedly removing the edges of a minimum h-way split. Although
they find a larger split in each iteration, they proved that the approximation ratio of this algorithm
is about 2− h/k, and it does not beat the approximation factor of 2 by any constant factor.

In our first main result, we show that the approximation ratio of the simple greedy algorithm
is better than 2 in minor-free graphs. Although the analysis of our second main result shows the
existence of a PTAS algorithm in minor-free graph, it doesn’t beat the approximation factor of
2 using the splits with a very small separation degree. Therefore, we provide a slightly different
analysis for our first result. Our main observation is that in a balanced weighted graph, there is a
matching that its weight is at least a constant fraction of the total weight of the graph. This result
can also be viewed as a generalization of the work of Nishizeki and Baybars [22] in unweighted
graphs. Later, we introduce a more profound analysis of our method to derive a PTAS in planar
and minor-free graphs.

1.1 Related Works

A problem closely related to k-cut is the multiway cut problem. Given a set of k vertices called
terminals, in the multiway cut problem, we want to find a minimum-weight cut that separates the
terminals from one another. The study of its computational complexity was inaugurated in 1983
by Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [9]1. They provided a simple 2-
approximation algorithm for the multiway cut problem, and proved that the problem is APX-hard

1The work was first known in an unpublished but widely circulated extended abstract. Their complete paper was
published in 1994.
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for any fixed k ≥ 3. However, in the case of planar graphs, they showed that the problem can be
solved in polynomial time for fixed k but is NP-hard when k is unbounded.

The approximation factor of this problem improved in a sequence of works [5, 8, 16]. As of
today, the best approximation factor is 1.3438 [16]. In case of planar graphs, a very recent result
by Bateni et al. [2] shows that there is a PTAS for the multiway cut problem in planar graphs.

Another problem related to the k-cut problem is the Steiner k-cut problem, which generalizes
both the k-cut problem and the multiway cut problem. Given an edge-weighted undirected graph
G, a subset of vertices T called terminals, and an integer k ≤ |T |, the objective is to find a
minimum-weight set of edges whose removal results in k disconnected components, each containing
at least one terminal. The best result known for this problem is a 2−2/k approximation algorithm
due to Chekuri et al. [6].

We remark that the “identity-relaxed” variants of Steiner tree and multiway cut problems,
namely k-MST and k-cut, have been elusive to date. The latter problems allow us to pick the
identity of k “terminals” to connect or separate, respectively. The initial 2-approximation algo-
rithms for Steiner tree [12] and multiway cut [9] were improved in a series of work [5, 18, 23, 25, 31]
culminating in a 1.3863 approximation algorithm [4] for Steiner tree and a 1.3438 approximation
algorithm for multiway cut [16]. Nonetheless, no approximation guarantee better than 2 − o(1) is
known for k-MST or k-cut.

Similarly, in the case of planar graphs, where PTASes are known for Steiner tree [3] and mul-
tiway cut [2], their identity-relaxed variants (prior to this work) proved to be more resilient. In
particular, the standard spanner construction techniques and the small-treewidth reduction ap-
proach developed and successfully applied to a host of network design problems in the last decade,
seem challenging to use in this context. Recently, Cohen-Addad et al. [7] gave PTASes for k-means
and k-median, using the local search method. (In their case, the non-identity-relaxed variant where
the k “centers” are known is trivial and not interesting to solve.)

2 Preliminaries

Let G = (V,E;w) be an undirected graph where w : E → R+ is an assignment of weights to the
edges of G. We use V (G) and E(G) to denote the vertices and edges of the graph G respectively.
For each edge e ∈ E, we use w(e) to denote the weight of e. Similarly, for a set of edges E′ ⊆ E,
we use w(E′) to denote the total weight of the edges in E′, i.e., w(E′) =

∑
e∈E′ w(e). A graph

G is called normalized if w(E) = 1. We denote the number of (connected) components in G by
comp(G). Moreover, we use β(G) = |E|/|V | to denote the ratio of the number of edges in G to its
number of vertices.

A k-way cut is a partition of V into k disjoint, nonempty sets V1, V2, . . . , Vk, called parts. We
use (V1, V2, . . . , Vk) to denote the cut. The weight of a k-way cut is the total weight of the edges
whose endpoints are in different parts. We denote the weight of the cut by w(V1, V2, . . . , Vk). For
any k-way cut, we define its separation degree to be k.

For any subset S ⊆ E of edges, we use G− S to denote the graph derived from G by removing
the edges in S. We say that the edge set S is a k-way split in G if comp(G − S) = (k − 1) +
comp(G). Therefore, k-way splits are k-way cuts equivalent in connected graphs. Similarly, we
define separation degree of S to be k. We use dG(S) to denote the density of S and define it as,

dG(S) = w(S)/(k − 1) .

A graph G is called H-minor free if and only if the graph H does not appear as a minor of G;
i.e., H cannot be obtained via removing and contracting edges in G.
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Algorithm 1: 2− ε Approximation Algorithm for Minor-free Graphs

Data: An H-minor-free connected graph G, and integer k
1: C = ∅.
2: while separation degree of C is less than k do
3: Let G′ = G− C be the graph obtained by removing all the previous cuts from G.
4: Let d be the separation degree of C.
5: if k − d ≤ 3 then
6: Let C ′ be a minimum (k − d+ 1)-way split in G′.
7: else
8: Let C ′ be a split which its density is minimum among all splits with the separation

degree at most 3.
C = C ∪ C ′.

9: return C.

For an H-minor-free graph G, we use η(G) to denote the Hadwiger number of G which is the
size of the largest complete graph that is a minor of G. The result by Thomason [27] directly
implies that the number of edges in a H-minor-free graph with is linear in its number of edges.

Lemma 2.1. For any H-minor-free graph G, we have β(G) ≤ (γ+ o(1))|V (H)|
√

ln |V (H)|, where
γ = 0.319... is an explicit constant.

Proof. Consider a complete graph H ′ with |V (H)| vertices. This graph has H as its minor, thus
G does not have a minor H ′. Therefore η(G) < |V (H)|. It is shown in [27] that for every graph G
we have

β(G) ≤ (γ + o(1))(η(G) + 1)
√

ln(η(G) + 1) ,

where γ = 0.319... is an explicit constant. This readily gives

β(G) ≤ (γ + o(1))|V (H)|
√

ln |V (H)| . �

3 Beating Approximation Factor of 2 in Minor-free Graphs

In this section, we provide a 2− ε approximation algorithm for the k-way cut problem in minor-
free graphs. We repeatedly find minimum 3-way and 2-way splits, and pick the one with the lower
density. Then, we remove the edges of this split from our graph to increase its number of connected
components. The only exception is the last split picked by the algorithm in which its separation
degree could be as large as 4. We show that in minor-free graphs, the approximation ratio of the
same algorithm is better than 2 by a constant factor. However, we show that in minor-free graphs,
the approximation ratio of our algorithm is better than 2 by a constant factor.

First, we show that the density of a split which has the minimum density among all the splits
with the separation degree of at most 3, is at most (2 − ε)OPT/k where OPT is the cost of the
minimum k-way cut, and ε is a positive constant depending on |V (H)|. Later we use this theorem
to show that the approximation ratio of our algorithm is better than 2. Our main tool is the
following lemma which shows that in every balanced minor-free graph, there exists a matching that
its weight is at least a constant fraction of the total weight of the graph. last split

Lemma 3.1. Given an δ > 0, let G = (V,E;w) be a normalized H-minor-free graph with n
vertices such that the density of 2-way split is least (1 + δ)/n, then the weight of a maximum

weighted matching in G is at least
δ2

16β(G)(1 + δ)
.

3



Proof. Let A be set of vertices in G whose degree is at least d. It follows that |A| ≤ 2|E|/d.
Note that |E| = nβ(G). Therefore, |A| ≤ 2nβ(G)/d. Let B = V \ A, then |B| ≥ n(1 − 2β(G)/d).
Let EB be the set of edges in E whose both ends are in B, and EA be all other edges. Setting
d = 4β(G)(1 + δ)/δ, we claim that w(EB) ≥ δ/2.

For the sake of contradiction suppose that w(EB) < δ/2. We have

w(EA) = w(E)− w(EB) > w(E)− δ/2 .

Since G is normalized, we have w(E) = 1. Therefore,

w(EA) > 1− δ/2 .

For every u ∈ B, let Cu be the 2-way split inG which separates u from all other vertices. Considering
all Cu splits, each edge in EB appears in 2 of these splits, and each edge in EA appears in at most
one of them. Thus, ∑

u∈B
w(Cu) ≤ 2w(EB) + w(EA) .

Note that w(EB) + w(EA) = w(E) = 1. Therefore, we have∑
u∈B

w(Cu) ≤ 2w(EB) + w(EA) < 1 + δ/2 . (1)

On the other hand, since every cut Cu is a 2-way split and has the density at least (1 + δ)/n, we
have ∑

u∈B
w(Cu) >

1 + δ

n
|B| ≥ (1 + δ)(1− 2β(G)/d) .

Substitute d for 4β(G)(1 + δ)/δ, gives us,∑
u∈B

w(Cu) ≥ 1 + δ/2 . (2)

Inequality (1) together with (2) is a contradiction. Therefore, w(EB) ≥ δ/2.
Now we find a weighted matching using the following greedy algorithm.

1. Let T = EB be the set all the edges in EB, and M = ∅ be our current matching.

2. Let e ∈ T be the edge which has the maximum weight among all the edges in T .

3. Add e to the matching, M = M∪ {e}. Also, remove all the edges which are incident to e
from T .

4. While |T | > 0, repeat steps 2-3.

In each step, we pick a edge which has the maximum weight in T , add it to our current matching,
and remove all the edges which are incident to this edge from T . Since, degree of every vertex in B
is at most d, every time we add an edge to our matching, we remove at most 2d− 1 edges from T .
Let e be the edge picked by Algorithm in one of its steps. e has the maximum weight in T , thus
the weight of each of the removed edges in this step is at most w(e). Therefore,

w(M) ≥ w(EB)

2d− 1
≥ δ/2

2d
.
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Replacing d, we have

w(M) ≥ δ/2

2d
=

δ2

16β(G)(1 + δ)
.

Therefore, we have found a matching with the total weight of
δ2

16β(G)(1 + δ)
, and it completes the

proof. Note that by Lemma 2.1, β(G) is at most a constant, therefore we have found a matching
with a constant weight in G. �

sth here!

Theorem 3.2. Given an H-minor-free graph G and an integer k ≥ 3, let S be a split with the
minimum density among all the splits with the separation degree of at most 3, Then for any k-way
split Sk, we have

dG(S) ≤ (2− ε)w(Sk)

k
,

where ε > 0 is a constant depending on |V (H)|.

Proof. First consider the case that G is connected. Let P1, P2, . . . , Pk be the components in
G − Sk. For each Pi let Ei be set of edges whose both ends are in Pi. We contract all the edges
in E1, E2, . . . , Ek to obtain the new graph G′ = (V ′, E′;w′). Also, we replace parallel edges with a
single edge with the weight of sum of them. The graph G′ has exactly k vertices each corresponding
to a component in G−Sk. Furthermore, G′ is H-minor-free since it is derived by edge contradictions
from G. Moreover, every split in G′ corresponds to a split with the same separation degree and
same weight in G. Let v1, v2, . . . , vk be the vertices of G′, where vi is the vertex corresponding to
Pi. For each vertex v in G′, we use cv to denote the weight of the edges incident to v. It follows
that cvi = w(Pi, V \ Pi) for every vertex vi. Also,

w(Sk) =

∑
v∈V (G′) cv

2
.

Without loss of generality, we assume that G′ is normalized, i.e., w(Sk) = 1.
If there exists a 2-way split in G′ with the density at most (2− ε)/k, then the theorem clearly

holds. Otherwise, we assume that the density of every 2-way split is greater than (2 − ε)/k. For
every vertex v in G′, Sv = ({v}, V (G′) \ {v}) is a 2-way split with the weight of cv. Based on the
definition of the density of splits, the density of every 2-way split is equal to its weight. Therefore,
we have dG′(Sv) = cv. Because the density of every 2-way split is greater than (2− ε)/k, we have
cv > (2− ε)/k for every vertex v.

Graph G′ is a normalized, and the density of every 2-way split is at least (2 − ε)/k. Setting

δ = 1− ε, Lemma 3.1 implies that G′ has a matching with the weight at least α =
δ2

16β(G′)(1 + δ)
.

Let M be the maximum matching in G′. We have w′(M) ≥ α. Because G′ is connected, we
have

β(G′) ≥ 1− 1/k ≥ 2/3 .

Setting ε = 1/(35β(G′)), it is easy to verify that α ≥ ε for any β(G′) ≥ 2/3. Thus, the weight of
the M is at least ε.

For every edge (a, b) inM, let S(a,b) = ({a}, {b}, V (G′)\{a, b}) be the 3-way split that separates
a and b from all other vertices and each other. We claim that the density of at least one of these
splits is at most (2− ε)/k. For the sake of contradiction, suppose that the density of all of them is
greater than (2−ε)/k. Let U be the set of vertices which are not inM. Recall that for every v ∈ U ,
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Sv is the split that separates v from all other vertices. Sv is a 2-way split, and our assumption its
density is greater than (2− ε)/k. It follows that,∑

(a,b)∈M

S(a,b) +
∑
v∈U

Sv >
2(2− ε)

k
|M|+ (2− ε)

k
|U | .

We have |U | = |V ′| − 2|M| = k − 2|M|. Therefore,∑
(a,b)∈M

S(a,b) +
∑
v∈U

Sv > 2− ε . (3)

Every edge which is the matching appears once in these splits, and every other edges appears twice.
Recall that the weight of the matching is at least ε. Therefore,∑

(a,b)∈M

S(a,b) +
∑
v∈U

Sv ≤ 2− w′(M) ≤ 2− ε ,

which contradicts (3). Therefore, there exists an edge (a, b) in M such that the density of S(a,b) is
at most (2 − ε)/k, and this completes the proof for the case G is connected with ε = 1/(35β(G′))
with is a constant by Lemma 2.1.

In case G is disconnected, we construct a graph G′ from G as follows:

• Add all the edges in G to G′.

• Create a new vertex u.

• For each component in G, add an edge in G′ with weight ∞ from u to an arbitrary vertex in
this component.

This procedure produces a connected graph G′. Moreover, every k-way split in G is also a k-way
split in G′, and minimum splits in G′ are also minimum splits in G since weight of the new edges
are ∞, and they are not in any minimum split. Clearly all the newly added edges will be in the
same component of G′ − Sk. The graph obtained by contracting all the edges whose both ends are
in the same component will remain H-minor-free. Let G′′ be this graph. similar to the previous
case, the theorem holds for ε = 1/(35β(G′′)). �

Now that we know there always exists a 3-way or a 2-way split of “acceptable” ratio, we show
that the density of minimum 3-way and minimum 4-way splits are also less than 2/k fraction of
the optimal solution. The following claim is our main tool to prove this fact.

Claim 3.3. Given an H-minor-free normalized graph G = (V,E;w) with k vertices, δ ≥ 0 and
h < k, let S be a h-way split such that dG(S) ≤ (1 + δ)/k. Then, the density of a minimum
(h+ 1)-way split is at most

1 + δ

k
+

1− δ
hk

Proof. Let G′ = (V ′, E′;w) be the graph obtained by removing all the edges in S from G. G′ has
h connected components. Also, w(E′) = 1−w(S). There is a 2-way split S′ in G′ with the weight
at most 2w(E′)/(k − h+ 1). ???. Let S′′ = S ∪ S′, then we have

w(S′′) = w(S) + w(S′) = w(S)(1− 2

k − h+ 1
) +

2

k − h+ 1
.
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The weight of S is w(S) = (h − 1)dG(S) ≤ (h − 1)(1 + δ)/k. Recall that h < k. Therefore,
1− 2/(k − h+ 1) ≥ 0, and we have

w(S′′) ≤ (h− 1)(1 + δ)

k
(1− 2

k − h+ 1
) +

2

k − h+ 1
.

So,

w(S′′) ≤ (h− 1)(1 + δ)

k
+

2

k − h+ 1
(1− (h− 1)(1 + δ)

k
) .

Thus, the density of S′′ is at most

dG(S′′) =
w(S′′)

h
≤ (h− 1)(1 + δ)

hk
+

2

h(k − h+ 1)
(1− (h− 1)(1 + δ)

k
) .

Which is,

dG(S′′) ≤ (h− 1)(1 + δ)

hk
+

2

h(k − h+ 1)
(
k − (h− 1)(1 + δ)

k
) .

Since k − h+ 1 ≥ k − (h− 1)(1 + δ), we have,

dG(S′′) ≤ (h− 1)(1 + δ)

hk
+

2

hk
=

1 + δ

k
+

1− δ
hk

. �

Now we can prove that the density of minimum 3 and 4-way splits are also “acceptable”.

Claim 3.4. Given an H-minor-free graph G and any k-way split Sk, the density of minimum 3
and 4-way splits are at most (2− ε/2)w(Sk)/k and (2− ε/3)w(Sk)/k respectively, if the separation
degree of Sk is as large as those of the splits.

Proof. Similar to the Theorem 4.2, we assume w.l.o.g. that G is connected. We contract all the
edges which are not in Sk to get a new planar graph G′ = (V ′, E′, w′). The total weight of the
edges in G′ is equal to the weight of Sk. W.l.o.g., we can assume that the graph G′ is normalized,
i.e., w(Sk) = w′(E′) = 1.

First, we proof our claim for a minimum 3-way split. By Theorem 3.2, there exists a split with
a separation degree of at most 3 and density of at most (2− ε)/k in G′. Let S be this split. If the
separation degree of S is 3, then our claim is proved. Otherwise, we assume that the separation
degree of S is 2. Setting δ = 1− ε, by Claim 3.3 the density of a minimum 3-way split is at most

1 + δ

k
+

1− δ
2k

=
2− ε
k

+
ε

2k
=

2− ε/2
k

.

Now we consider a minimum 4-way split. We know that there exists a 3-way split with a density
at most (2− ε/2)/k. Setting δ = 1− ε/2, and applying Claim 3.3, it gives us that the density of a
minimum 4-way split is at most

1 + δ

k
+

1− δ
3k

=
2− ε/2
k

+
ε/2

3k
=

2− ε/3
k

.

�

Note that if Algorithm 1 picks a split in one of its steps (except the last one), it is guaranteed
that no split with a lower separation degree has a lower density. We call these splits, sparse.
Specifically, we define sparse splits as below.
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Definition 3.5 (Sparse split). In a graph G = (V,E;w), an h-way split S is called sparse if for
any h′-way split S′ where h′ ≤ h, the following holds.

dG(S) ≤ dG(S′) .

The following theorem shows that combining some low-density sparse splits, results a low-density
split.

Theorem 3.6. Let G = (V,E;w) be an H-minor-free graph, S be a k-way split in G, and

a1, a2, . . . al be integers such that
∑l

i=1 ai < k. Let C1, C2, . . . , Cl be l splits where Ci is a minimum

(ai + 1)-way split in Gi = G −
⋃i−1

j=1Cj. Let Si = S \
⋃i−1

j=1Cj be a bi-way split in Gi for every
1 ≤ i ≤ l. Given a δ ≥ 0, suppose that for every Ci, we have

dG(Ci) ≤
(1 + δ)w(Si)

bi
.

Also, suppose that every split except the last one is sparse, i.e., Ci is sparse in Gi for every i < l.
Then,

dG(

l⋃
i=1

Ci) ≤
(1 + δ)w(S)

k
.

Proof. We prove this theorem by induction on l. When l = 1, the density of C1 is at most
(1 + δ)w(S1)/k. Since S1 = S, the theorem holds. For the induction step suppose that l ≥ 2, and
the theorem holds for any l − 1 splits. By induction hypothesis, for the last l − 1 splits we have

dG(
l⋃

i=2

Ci) ≤
(1 + δ)w(S2)

b2
,

since S2 is a b2-way split in G2. It implies that

w(
l⋃

i=2

Ci) ≤
(1 + δ)w(S2)

b2

l∑
i=2

ai .

Since C1 is a (a1 + 1)-split in G and S2 = S \ C1, we have k − a1 ≤ b2 ≤ k. Let S′ = S ∩ C1. It
follows that S′ is a (k − b2 + 1)-way split in G. Also, we have 1 ≤ k − b2 + 1 ≤ a1 + 1. We prove
the induction by considering two cases on k − b2 + 1.

• If k − b2 + 1 = 1, then b2 = k and S2 is a k-way split in G2. Therefore,

w(
l⋃

i=1

Ci) ≤ w(C1) +
(1 + δ)w(S2)

k

l∑
i=2

ai

≤ (1 + δ)w(S)

k
a1 +

(1 + δ)w(S2)

k

l∑
i=2

ai

≤ (1 + δ)w(S)

k

l∑
i=1

ai .

It implies that

dG(

l⋃
i=1

Ci) =
w(

⋃l
i=1Ci)∑l
i=1 ai

≤ (1 + δ)w(S)

k
.

This completes the induction step for this case.
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• Otherwise, k− b2 + 1 > 1, i.e., the separation degree of S′ = S ∩C1 is at least 2. By sparsity
of the split C1, we have

dG(C1) ≤ dG(S′)⇒ w(C1)

a1
≤ w(S′)

k − b2
.

Therefore,

w(S′) ≥ w(C1)(k − b2)
a1

. (4)

It derives that, the weight of the union of C1, C2, . . . , Cl is

w(

l⋃
i=1

Ci) ≤ w(C1) +
(1 + δ)w(S2)

b2

l∑
i=2

ai .

Since S2 = S − S′, we have w(S2) = w(S)− w(S′). Therefore,

w(
l⋃

i=1

Ci) ≤ w(C1) +
(1 + δ)(w(S)− w(S′))

b2

l∑
i=2

ai .

By (4), we have

w(

l⋃
i=1

Ci) ≤ w(C1) +
(1 + δ)(w(S)− w(C1)(k − b2)/a1)

b2

l∑
i=2

ai .

Let a =
∑l

i=1 ai. We claim that the weight of the split
⋃l

i=1Ci is at most a(1 + δ)w(S)/k.
Define the function g as

g(x) = x+
(1 + δ)(w(S)− x(k − b2)/a1)

b2

l∑
i=2

ai ,

which is equal to

g(x) = x+
(1 + δ)(w(S)− x(k − b2)/a1)(a− a1)

b2
.

Then,

w(
l⋃

i=1

Ci) ≤ g(w(C1)) .

Since g is linear in x, it is sufficient to show that our claim holds for both ends of g.

� For g(0) we have

g(0) =
(1 + δ)w(S)(a− a1)

b2
.

Since b2 ≥ k − a1, we have

g(0) ≤ (1 + δ)w(S)(a− a1)
k − a1

.

It is easy to verify that (a− a1)/(k − a1) ≤ a/k for every a ≤ k. Therefore,

g(0) ≤ (1 + δ)w(S)a

k
,

which proves our claim.
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� For g(a1(1 + δ)w(S)/k) we have

g(a1(1 + δ)w(S)/k) =
a1(1 + δ)w(S)

k
+

(1 + δ)(w(S)− (1 + δ)w(S)(k − b2)/k)(a− a1)
b2

= (1 + δ)w(S)(
a1
k

+
(1− (1 + δ)(k − b2)/k)(a− a1)

b2
) .

1 + δ ≥ 1. Therefore,

g(a1(1 + δ)w(S)/k) ≤ (1 + δ)w(S)(
a1
k

+
(1− (k − b2)/k)(a− a1)

b2
)

= (1 + δ)w(S)(
a1
k

+
(b2/k)(a− a1)

b2
) .

Simplifying the inequality gives that

g(a1(1 + δ)w(S)/k) ≤ (1 + δ)w(S)(
a1
k

+
a− a1
k

) =
(1 + δ)w(S)a

k
.

Thus, w(
⋃l

i=1Ci) ≤ a(1 + δ)w(S)/k. It follows that dG(
⋃l

i=1Ci) ≤ (1 + δ)w(S)/k.

We proved the induction step for both cases, and it completes the proof for our theorem. �

Finally we can establish the approximation guarantee of the greedy algorithm.

Theorem 3.7. The approximation ratio of Algorithm 1 is 2− ε/3 in minor-free graphs.

Proof. If k ≤ 4, the algorithm finds the minimum k-way split at its only step. Therefore, the
weight of the split returned by the algorithm is the optimal solution. Otherwise, we suppose that
k > 4.

Let SOPT be a minimum k-way split. The algorithm successively finds a split with the separation
degree at most 3 that has a minimum density. The only exception is the last split that it picks
which is either minimum 3 or 4-way split.

Let C1, C2, . . . , Cl be the splits picked by the algorithm, Gi = G −
⋃i−1

j=1Cj , and Si = SOPT −⋃i−1
j=1Cj be a bi-way split in Gi. By Theorem 3.2, dG(Ci) ≤ (2 − ε)w(Si)/bi for every i < l. Also

by Claim 3.4, dG(Cl) ≤ (2 − ε/3)w(Sl)/bl. Also, all the splits C1, C2, . . . , Cl−1 are sparse. Let

C =
⋃l

i=1Ci be the k-cut returned by the algorithm. It follows from Theorem 3.6 that

dG(C) ≤ (2− ε/3)w(SOPT)/k .

Therefore,
w(C) ≤ (2− ε/3)w(SOPT) .

�

Corollary 3.8. The approximation ratio of Algorithm 1 is 1.9968... in planar graphs.

Proof. The ε derived from Theorem 3.2 is 1/(35β(G′)) where G′ is a minor of G. If G is a planar
graph, then G′ is also planar. Therefore, β(G′) ≤ 3, and Theorem 3.2 holds for ε = 1/(35 · 3) =
1/105. Hence, the approximation ratio of Algorithm 1 in planar graphs is 2 − ε/3 = 2 − 1/315
which is 1.9968... . �

Putting together Theorem 3.7 with the bounds established for ε in this section yields Theo-
rem 1.1: there exists a polynomial-time algorithm for k-cut whose approximation factor for minor-
free graphs is a constant factor smaller than 2. The approximation guarantee is 1.9968... in planar
graphs.
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Algorithm 2: PTAS for the k-cut Problem in Minor-free Graphs

Data: A planar graph G, integer k, and ε > 0
1: C = ∅.
2: while separation degree of C is less than k do
3: Let G′ = G− C be the graph obtained by removing all the previous cuts from G.
4: Let d be the separation degree of C.
5: if k − d ≤ h(ε)(2 + 1/ε) then
6: Let C ′ be a minimum (k − d+ 1)-way split in G′.
7: else
8: Let C ′ be a split which its density is minimum among all splits with the separation

degree at most h(ε).
C = C ∪ C ′.

9: return C.

4 Polynomial Time Approximation Scheme

In this section we generalize our method to derive a polynomial time approximation scheme
(PTAS) for the k-cut problem in minor-free graphs. Recall that in the last section we showed
that approximation ratio of a natural greedy algorithm which successively removes the lowest
density split with the separation degree of at most 3 is less than 2 in minor-free graphs. Our main
observation for proving this bound was to show that the density of this split is at most (2 − ε)/k
fraction of the weight of a minimum k-way cut.

We generalize our method, and provide a PTAS for the k-cut problem in minor-free graphs.
In this section we show that the density of minimum weighted splits converges to OPT/k if we
consider splits with a larger separation degree where OPT is the weight of the optimal solution.
For an ε > 0, we first show that there exists a constant h(ε) such that there exists a split with the
separation degree of at most h(ε) and the density of at most (1+ ε)OPT/k. To this purpose, we use
the separation theorem which shows that in every minor-free graph with n vertices, the removal of
O(
√
n) vertices, can partition the graph into two parts such that each of them has at most 2n/3

vertices.

Theorem 4.1 (Alon et al. [1] , Lipton and Tarjan [19]). Let G be an H-minor-free graph with
n vertices, then there exists a separator of size of at most c1

√
n such that c1 is a constant only

depending on |V (H)|, and removal of this separator partitions the graphs into two parts each of
which has at most 2n/3 vertices.

The following theorem, is our main observation to derive a PTAS for the k-cut problem.

Theorem 4.2. Given an H-minor-free G = (V,E;w) and ε > 0 there exists a constant h(ε) such
that for any k ≥ h(ε) and k-way split Sk, there exists a split with the separation degree of at most
h(ε) and the density of at most (1 + ε)w′(Sk)/k .

Proof. Similar to Theorem 3.2, we assume w.l.o.g. that G is connected. We contract all the
edges which are not in Sk to get a new minor-free graph G′ = (V ′, E′;w′). The total weight of the
edges in G′ is equal to the weight of Sk. W.l.o.g., we can assume that the graph G′ is normalized,
i.e., w(Sk) = 1.

The following lemma is directly derived from Theorem 4.1 which shows that for any δ > 0,
there exists O(kδ) vertices such that removal of them partitions G′ into parts with the size at most
1/δ2.
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Lemma 4.3. For any H-minor-free graph G with n vertices, there exists a constant c2 such that
for any δ > 0, removal of c2nδ vertices of G partitions it into parts with the size at most 1/δ2.

Proof. The proof is almost alike to the proof of the similar lemma in [11]. We recursively find
and remove the separator of Theorem 4.1 in each part until its size become at most 1/δ2. Let b(n)
be the number of vertices removed in an H-minor-free graph with n vertices. The removal of the
separator in Theorem 4.1 partitions the graph into two parts such that each of them has at least
n/3 vertices. Let nα be the size of the first part, then the size of the other part is at most n(1−α).
Therefore, we have

b(n) ≤ c1
√
n+ b(nα) + b(n(1− α)) ,

where 1/3 ≤ α ≤ 2/3. Also, we have
b(n) = 0 ,

for any n ≤ 1/δ2. It can be shown by induction that

b(n) ≤ c2nδ − d
√
n ,

for some constants c2 and d. �

Note that G′ is H-minor-free. Therefore, there exists a constant c2 such that Lemma 4.3 holds
for G′. Let δ = ε/(c2(1 + ε)), by Lemma 4.3, there is a separator of size at most c2kδ that removing
it partitions G′ it into several parts such that size of each of them is at most 1/δ2.

Let P1, P2, · · · , Pl be these parts where Pi is the set of vertices in the part i. Let Pi =
{vi,1, vi,2, · · · }, and Ci be the split that separates each vertex in Pi from every other vertex in
G′, i.e., Ci = ({vi,1}, {vi,2}, · · · , V ′ \ Pi). We claim that the density of at least one of Ci is at most
(1 + ε)/k. For the sake of the contradiction, suppose that the density of every Ci is greater than
(1 + ε)/k.

Note that every edge in the splits Ci, is either between two vertices in a same part, or between
a vertex of the separator and another vertex. Therefore, each edge appears at most once in these
splits. Thus,

l∑
i=1

w′(Ci) ≤ 1 . (5)

On the other hand, the density of every Ci is greater than (1 + ε)/k. Therefore, we have

l∑
i=1

w′(Ci) >
1 + ε

k

l∑
i=1

|Pi| .

Since the size of the separator is at most c2kδ, we have,

l∑
i=1

w′(Ci) >
1 + ε

k

l∑
i=1

|Pi|

≥ 1 + ε

k
k(1− c2δ)

= (1 + ε)(1− c2δ) .

Substituting δ with ε/(c2(1 + ε)), gives us,

l∑
i=1

w′(Ci) > (1 + ε)(1− c2δ) = (1 + ε)(1− ε

1 + ε
) = 1 (6)
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Inequality (5) contradicts (6). Therefore, for at least one of the Ci, its density is at most (1 + ε)/k.
Since size of the each Pi is at most 1/δ2, the separation degree of our splits is at most 1/δ2 + 1
which is a constant. �

To complete the proof we show that the density of the split which Algorithm 2 picks in its last
step is not very large. Note that the separation degree of the split which the algorithm finds in the
last step is either k or it is at least h(ε)/(ε+ 1).

Lemma 4.4. Given a minor-free graph G and integers s ≥ h(ε)(1 + 1/ε) and k ≥ s, let S be a
minimum s-way split in G. Then, for any k-way split Sk, we have

dG(S) ≤ (1 + 2ε)w(Sk)

k
.

Proof. Similar to the Theorem 4.2, we assume w.l.o.g. that G is connected. We contract all the
edges which are not in Sk to get a new planar graph G′ = (V ′, E′;w′). The total weight of the
edges in G′ is equal to the weight of Sk. W.l.o.g., we can assume that the graph G′ is normalized,
i.e., w(Sk) = w′(E′) = 1.

Now we want to remove some edges in G′ to increase the number of components in G′ by
s − 1. While the number of components in G′ is at most s − h(ε), we find a split with the
separation degree at most h(ε) that has the minimum density. Let C1, C2, . . . , Cl be these splits
and (a1 + 1), (a2 + 1), . . . , (al + 1) be their size respectively. Let G′i = G′−

⋃i−1
j=1Ci for every Ci. It

follows that G′i is a (k −
∑i−1

j=1 aj)-way split in G′. According to Theorem 4.2 we have

dG′(Ci) ≤
(1 + ε)w′(G′i)

k −
∑i−1

j=1 aj
.

Let C =
⋃l

i=1Ci, be a s′-way split for G′ where s′ = 1+
∑l

i=1 ai. Since the number of connected
components in G′−C is greater than s−h(ε), we have s′ > s−h(ε). Therefore, s′ > s−h(ε) ≥ h(ε)/ε.
Also, s− s′ < h(ε). By applying Theorem 3.6 to the splits C1, C2, . . . , Cl, we have

dG′(C) ≤ (1 + ε)w′(G′)

k
=

1 + ε

k
.

Therefore,

w′(C) ≤ (1 + ε)(s′ − 1)

k
.

If s = s′, we have found a split with the density of at most (1 + ε)/k and proved the theorem.
Otherwise, we can assume that s > s′. By setting δ = ε, Claim 3.3 implies that the density of a
minimum (s′ + 1)-way split is at most

1 + ε

k
+

1− ε
s′k

<
1 + ε

k
+

1

s′k
.

Since s′ is larger than h(ε)/ε, the density of a minimum (s′ + 1)-way split is at most

1 + ε

k
+

1

s′k
<

1 + ε

k
+

ε

h(ε)k
=

1 + ε(1 + 1/h(ε))

k
.

Repeatedly applying 3.3 implies that for any a > 0, the density of a minimum (s′ + a)-way split is
at most

1 + ε(1 + a/h(ε))

k
.
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Therefore, the density of a minimum s-way split is at most

1 + ε(1 + (s− s′)/h(ε))

k
<

1 + ε(1 + h(ε)/h(ε))

k
=

1 + 2ε

k
.

�

Now we are ready to prove that Algorithm 2 is a PTAS for the k-way cut in minor-free graphs.

Theorem 4.5. Given an ε > 0, the approximation ratio of Algorithm 2 is 1 + 2ε in minor-free
graphs.

Proof. The analysis is very similar to the Theorem 3.7. If k ≤ h(ε)(2 + 1/ε) + 1, the algorithm
finds the minimum k-way split at its only step. Therefore, the weight of the split returned by the
algorithm is the optimal solution. Otherwise, we suppose that k > h(ε)(2 + 1/ε) + 1.

Let SOPT be a minimum k-way split. The algorithm successively finds a split with the separation
degree of at most h(ε) that has a minimum density. The only exception is the last split that it
picks that is a split with the separation degree at least h(ε)(1 + 1/ε).

Let C1, C2, . . . , Cl be the splits picked by the algorithm, Gi = G −
⋃i−1

j=1Cj , and Si = SOPT −⋃i−1
j=1Cj be a bi-way split in Gi. By Theorem 4.2, dG(Ci) ≤ (1 + ε)w(Si)/bi for every i < l. Also

by Lemma 4.4, dG(Cl) ≤ (1 + 2ε)w(Sl)/bl. Also, all the splits C1, C2, . . . , Cl−1 are sparse. Let

C =
⋃l

i=1Ci be the k-cut returned by the algorithm. It follows from Theorem 3.6 that

dG(C) ≤ (1 + 2ε)w(SOPT)/k .

Therefore,
w(C) ≤ (1 + 2ε)w(SOPT) .

�

Theorem 4.5 establishes our second main result.
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