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In this paper, we initiate the study of the multiplicative bidding language adopted by major Internet search
companies. In multiplicative bidding, the effective bid on a particular search auction is the product of a base
bid and bid adjustments that are dependent on features of the search (for example, the geographic location
of the user, or the platform on which the search is conducted). We consider the task faced by the advertiser
when setting these bid adjustments, and establish a foundational optimization problem that captures the
core difficulty of bidding under this language. We give matching algorithmic and approximation hardness re-
sults for this problem; these results are against an information-theoretic bound, and thus have implications
on the power of the multiplicative bidding language itself. Inspired by empirical studies of search engine
price data, we then codify the relevant restrictions of the problem, and give further algorithmic and hard-
ness results. Our main technical contribution is an O(logn)-approximation for the case of multiplicative
prices and monotone values. We also provide empirical validations of our problem restrictions, and test our
algorithms on real data against natural benchmarks. Our experiments show that they perform favorably
compared with the baseline.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Compu-
tations on discrete structures
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1. INTRODUCTION
Real-time ad auctions play a vital role in monetizing the Internet. In a real-time ad
auction, bids are entered by the advertiser beforehand, and the auction is conducted
at the time of a pageview or search. Each individual search query or pageview has a
possibly unique set of features (e.g., geographic location, time of day, device, etc.) that
can have a significant effect on the value of the ad to the bidder, as well as the market
price of the ad placement.

Recently, some of the major search engines have started to allow an advertiser to set
bid adjustments on their ad campaign in order to account for differences in valuation
that are a function of these types of features [Google Support 2014; Bing Ads 2014].
Indeed the transition to this mode of bidding has been characterized as one of the most
important recent changes to AdWords [HubSpot 2013]. For example, one could set a
bid adjustment of 1.1 for search queries originating in California, an adjustment of 0.9
for queries submitted from 2-3pm, and another adjustment of 1.2 for mobile devices.
Then, for a base bid of $1, your final bid on a California mobile query between 2-3pm
would be $1× 1.1× .9× 1.2 = $1.188.

Bid adjustments allow an advertiser to express relative valuation across a supported
feature type (for example, geographic location), but do not allow for specifying valua-
tion on arbitrary combinations of features. For example, if an advertiser found that
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mobile searches were 30% more valuable than desktop searches in New York, but only
15% more valuable in California, then this would not be expressible in the language of
bid adjustments. Such limitations are inevitable, as the space of possible combinations
of these features is prohibitively large. There are, of course, other bidding schemes with
succinct bid representations. We have chosen to study multiplicative bidding here be-
cause it is the status quo. Investigating the expressive power of other schemes is an
interesting future direction.

In this paper, we initiate the theoretical and empirical study of multiplicative bid-
ding and examine the task faced by advertisers given the option of setting bid adjust-
ments. We begin by whittling it down to a simple, elegant optimization problem on
two feature dimensions. This problem still captures the tension of bidding “multiplica-
tively,” rather than individually on each auction, while ignoring some of the unrelated
idiosyncrasies of search ad auctions. We then fully explore the complexity of this opti-
mization problem. We first show that the problem is Ω(

√
n)-hard to approximate, and

give an algorithm which exactly matches this hardness ratio. Because these results are
in relation to a solution where a bidder can bid individually on each feature combina-
tion, this also implies an information-theoretic limitation of the multiplicative bidding
language itself.

Motivated by analyses on real search auction data, we then examine the effect of
assuming various conditions (e.g., monotonicity on the values and prices in different
dimensions). As our main technical contribution, we develop anO(log n) approximation
algorithm when prices are multiplicative and values are monotone in one dimension.
We validate our assumptions on search auction data, and test our algorithm on this
data against natural benchmarks. Before elaborating on our results and techniques,
we present a formal model of the multiplicative bidding problem, and later (in Sec-
tion 1.2) describe details of our theoretical and empirical results.

1.1. Model
Most search engines conduct some variant of the generalized second price (GSP) auc-
tion to sell ad placements on user search queries. Since we are studying the advertiser-
facing budget optimization problem, an appropriate model for an individual auction
would be the “landscape” model from Feldman et al. [2007] (see also Section 1.3). In
this model there is a set of threshold bids b1, . . . , bn (where n is the number of positions
on the page, a small constant), and bidding in the interval [bi, bi+1] gives some number
of clicks at a cost of bi per click. A special case of this model (when n = 1) is a take-it-or-
leave-it click at a fixed price p. We will assume this special case in the present paper for
simplicity, since the task of multiplicative bidding is still sufficiently sophisticated in
this case. Extending to multiple click supply, multiple ad positions, or multiple queries
with different market prices is an interesting direction for future work.

The bidding dimensions supported by the major search engines include time of day,
geographic location, platform (e.g., mobile device vs. desktop) and keyword targeting.
Thus it is reasonable to assume that the number of dimensions is small, but the num-
ber of different values in each dimension is possibly large (for example, AdWords allows
bid multipliers at 15-minute intervals in a week, and at postal-code geographic level).
A reasonable place to start is the 2-dimensional problem, where each dimension has a
large number of possible values; for the purposes of technical focus, we consider only
this case in the paper, and leave it open to extend our results to multiple dimensions.

Given these modeling considerations, we now propose the first model for the multi-
plicative bidding problem. We feel that this simple model retains the salient feature of
the problem—namely, the tension of bidding multiplicatively—and is a solid founda-
tion on which to inspire future work in this area.
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The Multiplicative Bidding Problem. Suppose there are two bid adjustment di-
mensions with m and n possible settings, respectively. For each entry (i, j) ∈ [m] × [n],
an advertiser is given a price pij > 0 and value vij ≥ 0. He is required to specify a bid
multiplier ri for each row i ∈ [m] and cj for each column j ∈ [n]. The effective bid for
cell (i, j) is then ri · cj .

A cell (i, j) is said to be captured if its effective bid is at least the price, i.e., ri ·cj ≥ pij .
The advertiser also has a budget B > 0 and is subject to the budget constraint∑

(i,j):ricj≥pij

pij ≤ B.

His objective is to maximize the total value gained∑
(i,j):ricj≥pij

vij .

Relation to knapsack. Multiplicative bidding can be viewed as a restricted version
of the classical knapsack problem. Indeed, if we were free to bid any amount on each
individual cell, we would be able to capture any desired subset of the cells, where each
cell is simply an item with a price and value. We will refer to this solution as the
individual bidding optimum, or simply, OPT.

With multiplicative bidding, as we shall see, not all subsets of the cells can be cap-
tured. Consequently, we are optimizing over a smaller space, and the best solution
available can be no better than the individual bidding optimum.
Approximation benchmarks. One of our objectives is to quantify how much effi-
ciency is potentially lost by restricting an advertiser to multiplicative bidding (com-
pared to a real-time bid, as is common in Ad Exchanges, for example). In light of this,
the most natural benchmark would be the optimal individual bidding solution OPT. We
abuse notation by using OPT to denote both the set of cells in the optimum as well as
their total value.

To simplify our presentation, we will assume that OPT simply chooses the cells with
the best vij/pij ratio while not exhausting the budget B. This assumption is reasonable
in two ways. First of all, the reader may have already noticed that the above is the well-
known 2-approximation for knapsack and thus we lose a factor of at most 2 by adopting
such a solution. Secondly, in the context of Internet advertising, very often each pij and
vij is small compared to the overall spend and value derived, in which case our solution
is in fact (1− ε)-approximate. More specifically, we assume that pij/B < ε for all (i, j).
The reader may readily verify that this is indeed an (1 − ε)-approximation. We stress
again that almost all our results remain valid without this assumption since OPT is a
2-approximation to the true optimum. This assumption is merely introduced in order
to simplify our exposition and avoid being overly verbose.

Another more benign benchmark would be the multiplicative bidding optimum,
which is useful for characterizing the computational hardness of finding a good so-
lution. This is different from the former benchmark which carries the flavor of “infor-
mation theoretical” lower bounds. Somewhat surprisingly, at least in the general case,
the optimal approximation ratio is essentially the same with respect to the individual
bidding optimum (Lemma 2.1) and the multiplicative bidding optimum (Lemma 2.4).

1.2. Our contributions and techniques
The most important goal of our work is to establish a foundational multiplicative bid-
ding problem on which to build algorithmic insight. Given the prevalence of this new
bidding language, this represents an urgent call to investigate these bidding schemes
in different scenarios and to design better bid optimization algorithms for them.
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Table I. Lower bounds and algorithmic results on the approximation ratio in different cases.

General Monotone value-
-over-price

Monotone prices
and values

Multiplicative
prices

Multiplicative prices
and monotone values

Hardness Ω(
√
n) 1 1 Ω(n1/2−ε) Ω(

√
n) 1

Lemma 2.1 Lemma 2.3 Lemma 2.1
Algorithm O(

√
n) 1 O(

√
n) O(

√
n) O(logn)

Theorem 3.3 Corollary 4.3 Theorem 3.3 Theorem 3.3 Theorem 5.6

To this end, we first start with the plain formulation of the problem as stated in
Section 1.1, and we are able to fully characterize its approximability to be Θ(

√
n). Our

algorithm is greedy in nature and uses the intuition provided by the hardness result.
In order to better model the prices and values that can arise from practice, we then
consider a number of monotonicity conditions. For instance, we say that the values are
monotone along the rows if they can be permuted so that vij increases as i increases.
Our results are summarized in Table I, which gives the complexity of multiplicative
bidding in different cases against the individual bidding optimum.

Unfortunately, the lower bound does not really improve even if the values and prices
are monotone for both rows and columns. Nevertheless, we find that the problem be-
comes tractable given monotone value-over-price ratios (along either row or column).
This prompts us to consider a subclass of solutions, staircases, that are always feasible.

Building upon this staircase notion, we obtain the more optimistic approximation
ratio of O(log n) assuming that prices are multiplicative, i.e., pij = piqj and values
are monotone along one dimension. These assumptions are justified by empirical data
validation (see Section 6.3). At a high level, our algorithm attempts to extract a large
subset of the optimum and patch it into a staircase. However, care must be taken to
avoid overspending. Indeed, the factor O(log n) is a compromise between the budget
constraint and staircase feasibility.

To apply our algorithms in practice, we must deal with the fact that our monotonicity
assumptions hold only in an approximate sense. We address this in Section 6 by provid-
ing more robust adaptations of two of our algorithms; these adaptations allow the algo-
rithms to work in a general setting, but still take advantage of the near-monotonicity
of the data. We evaluate these algorithms on real search auction data, and show that
both have a significant gain over a benchmark inspired by Feldman et al. [2007].

1.3. Related work
This work is most related to the paper of Feldman, Muthukrishnan, Pál, and Stein
[2007] in which the authors propose uniform bidding as a means for bid optimization in
the presence of budget constraints in sponsored-search ad auctions. There are several
differences between this paper and the previous line of work on uniform bidding. Most
notably in the multi-dimensional settings, we cannot apply the results of Feldman
et al. [2007] and Muthukrishnan et al. [2007]. In fact, as we will observe, our problem
in general is inapproximable even for a simple setting.

Previous work on uniform bidding strategies assume that the number of impressions
or clicks that the advertiser gets varies as a function of the bid. Here, on the other
hand, we assume that bidding results in winning or not winning the impression. While
our hardness results directly apply to such more general settings, our approximation
algorithm results need an extra step to generalize to this setting. We leave this as an
interesting future research direction.

1We have also shown that it is Ω(n1/2−ε)-hard to approximate against the less stringent multiplicative
bidding optimum (Lemma 2.4).
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As a central issue in online advertising, optimizing under budget constraints
has been studied extensively both from publishers’ (or search engines’) point of
view [Mehta et al. 2007; Devanur and Hayes 2009; Goel et al. 2012; Charles et al.
2013; Karande et al. 2013], and from advertisers’ point of view [Borgs et al. 2007; Feld-
man et al. 2007; Rusmevichientong and Williamson 2006; Chakrabarty et al. 2007;
Muthukrishnan et al. 2007; EvenDar et al. 2009; Archak et al. 2012]. More closely rel-
evant to this paper, the bid optimization with budget constraints has also been studied
from advertisers’ perspective: This has been considered either in a repeated auction
setting [Borgs et al. 2007], or in the context of broad-match ad auctions [EvenDar
et al. 2009], or the case of long-term carryover effects [Archak et al. 2012].

2. HARDNESS RESULTS
We present lower bounds of Ω(

√
n) and Ω(n1/2−ε) for the multiplicative bidding prob-

lem in various natural scenarios. Besides implying that the approximation algorithm
in the next section is asymptotically optimal, they also show that the requirements en-
forced on values and prices in our O(logm)-approximation cannot be easily loosened.

LEMMA 2.1. There exists an instance such that the gap between multiplicative bid-
ding and individual bidding is Ω(

√
n), even when the prices are all equal.

PROOF. Consider the following bad instance where m = n:

— prices: pij = 1
— values: vii = 1, vij = 0
— budget: B = n

(vij) =

 1 0
. . .

0 1


Hence, we have OPT = n by picking all diagonal cells. We make a crucial observation

that realizes the tension to bid multiplicatively. This will be recurrent in this paper:

OBSERVATION 1. If our bid multipliers capture both (i, i) and (j, j) entries, then at
least one of (i, j) and (j, i) is also captured.

The reason for this is simple. Capturing both (i, i) and (j, j) implies that ri ·ci ≥ pii =
1 and rj · cj ≥ pjj = 1. Thus, we must have ri · cj ≥ pij = 1 or rj · ci ≥ pji = 1. In fact,
all we need is piipjj = pijpji.

Now we return to the main proof. Suppose that we collect k diagonal entries. Then
we must also collect at least

(
k
2

)
off-diagonal entries by the observation. Therefore,

B = n ≥
(
k

2

)
=⇒ ALG = k = O(

√
n) = O(OPT/

√
n).

In light of the last lemma, one might hope that some less pessimistic approximation
ratio is attainable under certain conditions. We rule out one such possibility.

Prices and values are monotone in both dimensions if the rows and columns can be
rearranged so that for any i ≥ i′, j ≥ j′, we have vij ≥ vi′j′ and pij ≥ pi′j′ .

LEMMA 2.2. There exists an instance such that the gap between multiplicative bid-
ding and individual bidding is Ω(n1/3), even when the prices and values are monotone.

PROOF. The proof is a more elaborate version of Lemma 2.1. Consider the following
bad instance where m = n:

— pij = n−1/3, vij = 0 for i+ j < n+ 1 (above antidiagonal)
— pij = 1, vij = 1 for i+ j = n+ 1 (on antidiagonal)
— pij = n1/3, vij = 1 for i+ j > n+ 1 (below antidiagonal)
—B = n
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(pij) =

 n−1/3 1

. .
.

1 n1/3

 , (vij) =

 0 1

. .
.

1 1


Again, we have OPT = n by picking all antidiagonal entries. Our goal is to show that

no algorithm achieves a total value of ω(n2/3).
Let k be the number of antidiagonal entries captured. Further let k1 and k2 be

the numbers of entries captured above and below the antidiagonal respectively. As
in Lemma 2.1, we have k1 + k2 ≥

(
k
2

)
.

On the other hand, the budget constraint dictates that

k + k1n
−1/3 + k2n

1/3 ≤ n,

which gives k1 ≤ n4/3, k2 ≤ n2/3 and in turn k = O(n2/3). Our claim is immediate
since ALG = k + k2 = O(n2/3).

In the full version, we generalize the construction above to establish an Ω(n
c−1
2c−1 ) gap

for an arbitrary positive integer c. Thus the case here corresponds to c = 2. By taking
c→∞, we conclude a hardness of Ω(n1/2−ε).

LEMMA 2.3. There is an instance such that the gap between multiplicative bidding
and individual bidding is Ω(n1/2−ε), even when the prices and values are monotone.

Finally, we show in the full version that the approximation ratio is still dismal even
when compared against the less stringent multiplicative bidding optimum.

LEMMA 2.4. Unless NP ⊆ BPP, there is no randomized polynomial-time algo-
rithm that finds a solution of value within a factor of O(n

1−ε
2 ) of the optimal multi-

plicative bidding solution.

3. TIGHT O(
√
n)-APPROXIMATION ALGORITHM FOR THE GENERAL CASE

In this section, we present an O(
√
n)-approximation for the multiplicative bidding

problem. This matches the lower bound in Lemmas 2.1 and 2.4. Our algorithm will
greedily construct at most O(

√
n) disjoint feasible solutions whose union captures all

the cells in the individual bidding optimum OPT. The approximation promise follows
immediately by picking one among these.

We first give an overview of the class of solutions found by the algorithm before
describing it formally. Each of the solutions will focus on certain active columns. This
can be done by bidding 0 on the other columns.

On the other hand, the bid on each active column is just 1, and the bid on row i
equals the maximum price pij among the entries (i, j) ∈ OPT in an active column j, or
simply 0 if there is no such entry.

Observe that this kind of bidding allows us to capture all the OPT entries in the active
columns. Our algorithm is stated as Algorithm 1. Notice that the candidate solutions
V in the while loop are constructed in a greedy manner.

For the best candidate set V in the algorithm, we bid as follows:

— For j /∈ V , cj = 0.
— For j ∈ V , cj = 1.
— For i ∈ [m], ri = max

(i,j)∈OPT,j∈V
pij , or 0 if ∀j ∈ V , (i, j) /∈ OPT.

As mentioned before, this bidding scheme captures all the OPT cells from columns in
V by design. We first show that such a solution is indeed feasible.
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ALGORITHM 1: O(
√
n) approximation

U ←− [n];
candidates←− ∅;
while |U | > 2

√
n do

Let V ⊆ U be a maximal set of at most
√
n columns such that

m∑
i=1

max
(i,j)∈OPT,j∈V

pij ≤
B

|V | ,

where the max is 0 if there is no cell from OPT in row i and columns in V ;
Add V to candidates;
Remove V from U ;

end
For each remaining j ∈ U , add V = {j} to candidates;
Output the best V from candidates

LEMMA 3.1. For each candidate V , the total spend is at most B.

PROOF. If V is chosen in the while loop, then for row i we spend at most |V |ri =
|V | max

(i,j)∈OPT,j∈V
pij . Summing over all rows, we get

m∑
i=1

|V | max
(i,j)∈OPT,j∈V

pij ≤ |V | ·
B

|V |
= B.

On the other hand, it is clear that the solution for V chosen after the while loop is a
subset of OPT and hence costs at most B.

Next we establish the approximation guarantee. The intuition behind it is that when
V is not large, it consumes a relatively large amount of the budget and hence there
cannot be too many |V | <

√
n.

LEMMA 3.2. If |V | <
√
n and V is picked before the last candidate in the while loop

of the algorithm, we have
m∑
i=1

max
(i,j)∈OPT,j∈V

pij ≥
B

4|V |
. (*)

In particular, the OPT entries from columns in V cost at least B/4|V |.

PROOF. By the maximality of V , the fact that V has not reached the size
√
n implies

that no column can be added to V .
Note that inserting a new column j to V increases the L.H.S. of (*) by at most∑
i:(i,j)∈OPT pij , i.e., the amount OPT spends on j.
Since V is not the last, there must be more than 2

√
n available columns in U , one of

which costs no more than B/2
√
n ≤ B/2(|V |+ 1). By the maximality of V , this column

cannot be added to V and we must then have

B

2(|V |+ 1)
+

m∑
i=1

max
(i,j)∈OPT,j∈V

pij >
B

|V |+ 1
,

from which our result follows.

THEOREM 3.3. The algorithm above achieves an approximation ratio of O(
√
n).
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Fig. 1. A regular staircase with four rows and four columns. The numbers shown at the bottom and to
the right are the column and row multipliers respectively. The numbers shown in blue inside the staircase
indicate the effective bids with a lower bound of 1/δ. The numbers shown in red outside the staircase are
the effective bids with an upper bound of δ. Note that each row or column can have different height or width
if we repeat the associated multiplier.

PROOF. It suffices to show that there are O(
√
n) candidates V as they collectively

capture all of OPT. Since there can be at most
√
n of them of size

√
n, and at most 2

√
n

candidates V after the while loop, it suffices to bound the number of candidates V with
size smaller than

√
n in the loop.

Let a1, · · · , ak be their sizes. Then trivially a1 + · · ·+ak ≤ n. By Lemma 3.2, their OPT
entries cost at least B/4a1 + · · ·+ B/4ak ≤ B, hence 1/a1 + · · ·+ 1/ak ≤ 4. Now by the
Cauchy-Schwarz inequality,

4n ≥ (a1 + · · ·+ ak)

(
1

a1
+ · · ·+ 1

ak

)
≥ k2.

This gives k ≤ 2
√
n, as desired.

Finally, we remark that a O(
√
m)-approximation can be obtained by swapping the

roles of rows and columns. Combining both gives a O(min{
√
m,
√
n})-approximation.

4. STAIRCASES AS THE BUILDING BLOCK
We introduce an important notion which provides a sufficient condition on the feasibil-
ity of a solution. As we shall see, it will be helpful in deriving approximation algorithms
for our problem as this subclass of solutions is much easier to work with.

Definition 4.1. A configuration S ⊆ [m] × [n] is a staircase if for any i, j ∈ [n], its
subset of cells in column i is a subset or superset of that in column j.

It is clear that replacing columns by rows in the definition makes no difference. The
name staircase originates from the fact that the rows and columns can be permuted in
such a way that S indeed resembles a staircase (with possibly uneven step sizes).

LEMMA 4.2. Ignoring the budget constraint, a staircase S can always be captured
exactly.

PROOF. Figure 1 demonstrates our bidding scheme to capture a simple staircase.
Notice that we are bidding 1/δi within the staircase and δi outside, where i is a positive
integer varying across different cells. By making δ sufficiently small, we can capture
the staircase exactly.

In general, if S has no entry in any row or column, we set the corresponding bid
multiplier to 0 and thus essentially remove it. We then permute the remaining rows
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and columns such that our staircase takes on a shape as Figure 1. For the rows, we
simply bid 1/δ, 1/δ3, · · · successively on each level from top to bottom. In contrast, the
bids on the columns are 1, δ2, · · · on each level from right to left.

4.1. 1-approximation for the case of monotone vij/pij
The staircase idea immediately implies that our problem can be solved (almost) exactly
under one natural assumption.

COROLLARY 4.3. If the ratios vij/pij are monotone in one dimension, then there is
a 1-approximation algorithm.

PROOF. This is immediate since OPT, which collects entries with the best v/p ratio as
long as the budget B has not been exhausted, will be a staircase when v/p is monotone
in one dimension. By Lemma 4.2, OPT can be captured exactly. This can be implemented
efficiently by selecting the entries with highest v/p ratios one at a time.

5. O(logm)-APPROXIMATION WHEN PRICES ARE MULTIPLICATIVE AND VALUES ARE
MONOTONE

In this section, we make the following two assumptions on the prices and values.

— Multiplicative prices: there are pi, qj > 0 such that pij = pi · qj .
— Monotone values: the values are monotone along one dimension, say, rows. In other

words, the rows can be permuted so that vij ≥ vi′j for i′ > i.

Both of them are necessary in the sense that without either of them, no algorithm
can have a good performance as demonstrated by the bad instances in Lemmas 2.1 and
2.3. In the former case, the instance has all prices equal (hence multiplicative) and a
gap of Ω(

√
n), whereas in the latter case, the values are even monotone in both dimen-

sions but the gap is Ω(n1/2−ε). Our assumptions are verified empirically in Section 6.
We now have a nice characterization of the configurations that can be captured.

LEMMA 5.1. If prices are multiplicative, a configuration S ⊆ [m] × [n] can be cap-
tured if and only if it is a staircase.

PROOF. One direction simply reiterates Lemma 4.2. For the other direction, let S
be a feasible configuration that is not a staircase. Equivalently, there are two columns
j1 and j2 for which S ∩ ([m]×{j1}) is neither a subset nor a superset of S ∩ ([m]×{j2}).

Thus, there are some i1 and i2 such that (i1, j1), (i2, j2) ∈ S and (i1, j2), (i2, j1) /∈ S.
This is a contradiction since the former implies that (ri1cj1)(ri2cj2) ≥ (pi1pj1)(pi2pj2)
but the latter gives (ri1cj2)(ri2cj1) < (pi1pj2)(pi2pj1).

As a consequence of this lemma, it is sufficient to search for a good staircase within
our budget. We present an algorithm fulfilling this objective step by step, each of
which, albeit seemingly unrelated, will serve its own purpose. While our derivation
establishes an approximation of O(logm), it can be easily turned into an O(log n)-
approximation by swapping the roles of rows and columns and assuming column mono-
tonicity instead of row monotonicity.

5.1. Algorithm
Our algorithm consists of three major steps. An overview is also given in Algorithm 2.

Step 1: Clustering prices. We round down all row price multipliers pi to powers of 2, and
permute the rows such that pi increases from top to bottom. This results in Figure 2(a)
where each inner rectangle represents a set of rows with equal pi. We call these inner
rectangles strips.
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Since pi is now a power of 2, the prices of two cells in the same column but consecu-
tive strips differs by a factor of at least 2.

Step 2: Finding OPT(B/4). As one may have guessed, our algorithm builds upon the op-
timal solution to find a good staircase—with one caveat. Instead of basing our solution
on the OPT with budget B, we use the OPT with budget B/4, denoted by OPT(B/4). The
reason for this choice will become apparent in the proof of Lemma 5.3.

We first permute the rows within each strip such that vij is increasing as we traverse
down. This is possible because of value monotonicity. Now OPT(B/4) must consist of
width-1 towers that sit on the bottom of our strips, as the prices within the same
column in a strip are constant. Figure 2(b) gives one possible OPT(B/4).

In summary, we

— permute the rows in each strip such that vij ’s are increasing from top to bottom; and
— find the cells in OPT(B/4), which must emanate from the bottom of a strip.

Step 3: Constructing a staircase from OPT(B/4). The last step of our staircase construction
is made up of two main substeps: we first extract a subset of OPT(B/4) according to a
certain parameter h ∈ [m] and then apply some patching work to transform it into a
staircase, denoted ALGh. The final solution ALG will be the best ALGh.

Again, for notational convenience we will use ALGh and ALG to denote both the set of
cells in the solution and their total value.

— Disregard strips of height less than h
No cells in such strips will be chosen.

— Take all height-h towers
For the constituent towers of OPT(B/4) with height at least h, we select its h × 1
subtower sitting on the bottom of a strip (Figure 2(c)), and insert them into ALGh.

— Propagate/copy the height-h towers upwards
If the h× 1 subtower in strip i and column j is chosen in the previous step, we select
the corresponding h × 1 subtower in strip i′ and column j for all i′ < i provided that
strip i′ has height at least h (Figure 2(d)). They are inserted into ALGh.

Our solution ALGh thus consists of all the cells selected above. In the figures, these are
depicted as red and hatched blue regions. Notice that no cells in strip 2 were selected
since its height is smaller than h. A height-h tower can be chosen in both steps.

The algorithm outputs the best ALGh for 1 ≤ h ≤ m, i.e., ALG = maxh∈[m] ALGh.

ALGORITHM 2: Overview of O(logm) approximation
Step 1:
Round down all of the pi’s to the nearest powers of 2;
Cluster together rows with the same pi;
Reorder the clusters in increasing pi;
Step 2:
Reorder the rows within each cluster in increasing values;
Compute OPT(B/4), the individual bidding optimum with budget B/4;
Step 3:
for h=1,2,. . . ,m do

ALGh ←− ∅;
Insert into ALGh all height-h towers of OPT(B/4);
Insert into ALGh all height-h towers in the strips above the ones in the last line;

end
Output the best ALGh as ALG
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(a) Strips.

ha

(b) OPT(B/4).

h

h

h

(c) Finding towers of height h.

h

h

h

(d) Propagating towers upwards.

Fig. 2. The steps in approximating the best multiplicative bidding scheme. The green “towers” in (b) show
the cells in OPT(B/4). The red lines in (c) illustrate one candidate height h. Note that the second strip is
shorter than h, and therefore does not contribute to ALGh at all. The red towers in (c) depict the intermediate
solution of height h; this is extended to ALGh in (d) via propagating upwards: see the hatched towers.

5.2. Analysis
LEMMA 5.2. ALGh is a staircase.

PROOF. This is almost by design. For each column, the cells in ALGh are exactly the
height-h towers up to some strip i (excluding those whose height is less than h). This
is guaranteed by the propagation operation.

Thus the cells of ALGh in a column must be a subset or superset of that in another.

LEMMA 5.3. ALGh costs no more than B, i.e.,
∑

(i,j)∈ALGh pij ≤ B.

PROOF. First of all, the cells selected in the first substep of step 3 cost at most B/4
since they are part of OPT(B/4). We argue that the propagation operation, which is the
second substep, spends also at most B/4.

Recall that we have rounded the row price multipliers to powers of 2 in step 1. In
particular, the prices between two consecutive strips must then differ by a factor of 2
or more. Therefore a height-h tower, when copied upwards, spends at most 1/2i of its
cost on the i-th strip above it.

Now summing over all height-h towers from OPT(B/4), the total cost of the propaga-
tion operation does not exceed B/4 · (1/2 + 1/4 + . . . ) = B/4.

725



Our total cost, which has accounted for all of ALGh, is bounded by B/4 + B/4 = B/2.
Finally, since we have rounded down prices to powers of 2 in step 1, the actual cost of
ALGh cannot be more than twice of B/2.

LEMMA 5.4. We have OPT(B/4) ≥ OPT · (1/4− ε).

PROOF. We will use the small cost assumption pij/B < ε here.2
Recall that OPT(B′) collects the cells (i, j) in the order of decreasing vij/pij until the

budget B′ is exhausted. Thus, the extra cells collected in OPT \ OPT(B/4), which cost
3B/4, each have a vij/pij ratio no better than those in OPT(B/4).

This implies that OPT ≤ OPT(B/4)
1/4−ε , since OPT(B/4) has a cost of more than B · (1/4− ε)

by the small cost assumption.

LEMMA 5.5. We have ALGh ≥ OPT(B/4)/2 logm for some h.

PROOF. Let OPTh(B/4) be the total values of the OPT(B/4) cells at height h in each
strip. We claim that

ALGh ≥ h · OPTh(B/4).

This can be seen as follows. Each cell (i, j) ∈ OPTh(B/4) is the top of some height-h
tower in a strip. Notice that the h− 1 cells below (i, j) have values at least vij by value
monotonicity. Our claim then follows from summing over all (i, j) ∈ OPTh(B/4).

The rest of the proof is standard. Suppose that no choice of h gives ALGh ≥
OPT(B/4)/2 logm. Then for all h, we have

h · OPTh(B/4) ≤ ALGh <
OPT(B/4)

2 logm
,

which implies

OPT(B/4) =
m∑
h=1

OPTh(B/4) <
m∑
h=1

OPT(B/4)

h · 2 logm
≤ OPT(B/4).

This is a contradiction.

Combining all the lemmas, we obtain our main result.

THEOREM 5.6. Our algorithm gives an O(logm)-approximation.

PROOF. Lemmas 5.2 and 5.3 establish the feasibility of ALGh. The approximation
guarantee follows from Lemmas 5.4 and 5.5.

We highlight the roles played by different steps of the algorithm. Step 1, which clus-
ters similar price multipliers, ensures that the propagation procedure in Step 3 would
result in a convergent geometric sum for the cost. Step 2 computes OPT(B/4) which is
essential to achieving our approximation guarantee as well as the budget constraint.
Lastly, the propagation procedure in Step 3 also enforces the staircase feasibility.

Our ratio of O(logm) might not be the most desirable. However, the algorithm likely
outperforms its theoretical guarantee in average case. For example, one reason is that
the propagation procedure hatches new towers above existing ones but their values
are not accounted for in the analysis as they can be negligible in the worst case. In
practice, however, such an extreme pattern of values should be rare.

2We note that, as mentioned before, our O(logm)-approximation still holds without it.
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6. EMPIRICAL STUDY
In this section, we report the results of our experiments. We start by explaining the
algorithms implemented, followed by a discussion on their empirical performances. An
analysis is also given on the validity of the assumptions made throughout the paper.

6.1. Algorithms and implementation notes
We have tested our algorithms on real world data and compared their performances.
We discuss how they are implemented in the rest of this section.

One of the recurrent themes in our paper is monotonicity. In the real world, however,
data rarely obey monotonicity perfectly due to presence of noise, among other factors.
To apply our algorithms, we must still somehow obtain a decent ordering of the rows
(or columns) so that monotonicity approximately holds.

For instance, our monotone value-over-price ratio algorithm from Corollary 4.3 as-
sumes that vij/pij increases along the columns (or rows). In essence, each of the n
columns induces one possible (partial3) permutation of the rows and our job is to ag-
gregate these n candidates into one representative “consensus permutation”. To this
end, we adopt the procedure in Algorithm 3. This is also used as a subroutine of our
O(log n)-approximation implementation to rank values. See section 6.3.2 for a more
in-depth discussion of the method.

6.1.1. Staircase algorithm: 1-approximation for Monotone value-over-price ratios. The discus-
sion above sums up how we permute the rows. In the theoretical algorithm, the next
step is to simply take OPT, which is a staircase, as the solution. But as mentioned be-
fore, this is not always feasible due to imperfect monotonicity. In the implementation,
we resort instead to finding a good staircase. More specifically, our solution captures a
number of consecutive cells at the bottom of each column.

Thus now we have m possible choices for each column. The resulting optimization
problem can be solved by a dynamic program that computes the best solutions formed
by the first j columns for different budget thresholds.

6.1.2. Tower building algorithm:O(logn)-approximation for multiplicative prices and monotone val-
ues. This is similar to the last implementation. We first cluster together rows with sim-
ilar prices. For each cluster we then find a permutation of its rows so that values are
roughly monotone. At this point we encounter the same issue, namely that OPT(B/4)
is not necessarily a staircase in each price cluster. Moreover, the factor 1/4 for budget
scaling is a rather arbitrary parameter to make the formal analysis go through. Our
implementation employs a different view of the algorithm via dynamic programming.

For a given column, our algorithm has the freedom to choose the height-h towers in
the first i price clusters, where i ranges from 0 to the number of clusters. Hence there
are at most m choices per column. Now the dynamic program simply recursively com-
putes the best solution formed by the first j columns for different budget thresholds.

6.1.3. Uniform bidding. We use an algorithm similar to that proposed by Feldman et al.
[2007] as a baseline of how well our algorithms perform. Feldman et al. show that in
a large class of bidding problems4, using a single bid on all keywords guarantees a
1− 1/e approximation, and provides much better performance in practice.

In our adaptation of that algorithm, we find the largest single bid b that can be
placed on all cells in the table while respecting the budget constraint. Clearly this can
be realized by multiplicative bidding.

3The permutations are sometimes partial since the values of a cell can be missing due to data sparsity.
4They define their model based on how bids translate to costs and clicks in a collection of second-price

auctions by looking at the so-called bid landscapes.
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Fig. 3. The performance of the three algorithms. The plot shows what percentage of the individual bidding
optimum each algorithm achieves, and quantifies it based on fraction of instances. For instance, at the 50%
percentile, in half the instances the performance of the three algorithms is 69%, 69%, 92%, respectively.

6.2. Results and comparison
We use a dataset of 1000 randomly selected anonymized advertisers using Google Ad-
Words system. Two of the dimensions that these advertisers can provide bid multi-
pliers for are “geo” and “keyword.” The types of impressions that the advertisers are
interested in has a wide range as well: from a few up to hundreds of different geo loca-
tions, and from tens to thousands of keywords. For our experiments, conversion data
acts as a proxy for value, and historic cost-per-click data is used to derive sample price.

We first plot the performance of the three different algorithms, namely uniform bid-
ding, O(log n) approximation (also called “tower building”) and ratio-based optimiza-
tion (also called “staircase”). The three curves in Figure 3 show the percentage of the
individual bidding optimum that each algorithm can obtain. The uniform bidding ap-
proach guarantees 64% of the optimum on average, while this number is 66% and 85%
for O(log n) approximation and ratio-based optimization, respectively. The median per-
formances for the three algorithms are 69%, 69%, 92% respectively.

These numbers suggest that the staircase approach is much better than the uniform
bidding, whereas the tower building algorithm does not give us any benefits over the
uniform bidding. The latter conclusion is not entirely true. Investigating how often
the tower building algorithm outperforms the uniform bidding result, we find that the
best of the two algorithms provides a mean of 75% and a median of 81% for perfor-
mance. Figure 4 illustrates this with a histogram of the gain of the two algorithms
over the uniform bidding result. Finally we compare the staircase and tower building
algorithms. As expected from the above analysis, the former is almost always the bet-
ter approach. Though the latter outperforms the former in 10% of the instances in our
dataset, the gains in these cases are nominal. See Figure 5 for details.

6.3. Validating our assumptions
6.3.1. Are prices multiplicative?. To validate the assumption that prices are multiplica-

tive, we looked at click price data from AdWords, aggregating by the country in which
the search query was performed, and the hour of the day. (We did this aggregation over
all ad clicks over a week of time in November, 2013.) From this we obtained pij , the
average click price for each combination of country i and hour j. We then looked for two
vectors r and c such that the price pij was well-approximated by ricj . To find this vector
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Fig. 4. The gain of our algorithms with respect to uniform bidding. For example, at 0.25 on the x axis, we
can read the number of instances where either algorithm could improve uniform bidding by 25%.

Fig. 5. Comparison between our two algorithms: tower building vs. staircase

we ran a linear regression fitting log(pij) ∼ log(r1)+ · · ·+log(rn)+log(c1)+ · · ·+log(cm),
which results in independent coefficients for each country and each hour of the day. If
this is a good fit, it means that log(pij) ≈ log(ri) + log(cj), which implies pij ≈ ricj .

The regression indeed was a good fit, with virtually every country and hour as sig-
nificant predictors, and an R2 value of 0.94. The density plot in Figure 6 shows the
actual prices vs. the prices predicted by the regression model, i.e., it plots pij vs. ricj
(note the scale has been changed to [0, 1] for privacy purposes).
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Fig. 6. Verifying that prices are multiplicative. For all i, j, the actual market price pij (y-axis) is plotted
against a predicted market price ricj (x-axis), where ri and cj are computed using linear regression. Prices
are shown in log scale, under a linear transformation to [0, 1].

6.3.2. Are values and ratios monotone?. For 1 ≤ j ≤ n, let Sj ⊆ [m] be the set of entries
in column j, and πj be the permutation of Sj induced by increasing order of the values
(or ratios) of Sj . In other words, we have n partial3 permutations of [m] which we wish
to aggregate into one “consensus” permutation π.

Our heuristic in Algorithm 3 was inspired by the algorithm for rank aggregation in
Ailon et al. [2008], where the input orderings πj are complete rather than partial.

In words, the heuristic first constructs a digraph encoding the dominance relation-
ship between every two i, i′ ∈ [m] by a majority vote. Then a random vertex is selected
one at a time and used to extend our partial order π. At the end, the remaining incom-
parable pairs are ordered arbitrarily.

We evaluate how good π is with respect to π1, . . . , πn by the fraction of agreements:

quality(π;π1, . . . , πn) =

∑n
j=1 #{(i, i′) ∈ Sj × Sj |i <πj i′, i <π i′}∑n

j=1

(|Sj |
2

) .

Thus we have quality(π;π1, . . . , πn) = 1 if our total order π is perfectly consistent
with all of π1, . . . , πn, showing that our values are monotone. On the other hand, for
any given complete permutation π1, . . . , πn, it is possible to construct a π with quality
1
2 by choosing a random πj . This is in fact the well-known folklore 2-approximation
for the rank aggregation problem. As an example, feeding our heuristic with random
complete permutations will generate a total order with quality 1

2 in expectation.
Figure 7 plots a histogram of this quality measure for the heuristic consensus per-

mutations found. Note that this is only a lower bound on how monotone the instance
is because perhaps we did not find the best consensus permutation.

7. CONCLUSION AND OPEN PROBLEMS
In this paper we have formulated the multiplicative bidding problem, and character-
ized its complexity in various cases. In many settings it is Ω(n1/2−ε)-hard to approxi-
mate. Nonetheless, the problem becomes approximable after imposing appropriate and
natural assumptions on the input. A wealth of future work on this new scheme merits
study, and we sample a few which we believe are of particular prominence.
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ALGORITHM 3: Heuristic for computing consensus permutation
Input: partial permutations π1, . . . , πn
Output: total ordering π
Construct a digraph D over the vertex set [m]:
for i, i′ ∈ [m], i 6= i′ do

if no πj contains both i, i′ then
continue;

end
if more than half the πj ’s containing i, i′ have i <πj i

′ then
insert edge (i, i′) to D;

else
insert edge (i′, i) to D;

end
end
Maintain a partial order π initialized to be empty:
for i = 1, 2, . . . ,m do

Let si ∈ [m] be a random vertex of D not processed yet.
for each parent p of si do

make p <π si in π if p, si are currently incomparable;
end
for each child c of si do

make c >π si in π if c, si are currently incomparable;
end

end
while π is not yet a total order do

find two incomparable i, i′ ∈ [m] and make i <π i′ in π;
end

Monotonicity for 25% 50% Mean 75%
Value 0.8838 0.9697 0.9042 1.0
Ratio 0.8648 0.9500 0.9059 1.0

Fig. 7. Verifying “monotonicity” assumptions in our dataset. The table shows the mean and median as well
as the 1

4
and 3

4
quantiles for both measurements.
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One obvious question is to close the gap for the case of multiplicative prices and
monotone values. It is also worthwhile to explore the complexity of the problem under
other realistic assumptions (e.g., multiplicative values and correlated values/prices).

Taking a step back, most of our results are concerned with the individual bidding
optimum but an advertiser may be more interested in learning how well he could
be doing rather than understanding the inherent limitation of multiplicative bidding.
While we have a hardness of Ω(n

1−ε
2 ) against the multiplicative bidding optimum for

the general case, the prospect of better approximations in other cases is not ruled out.
Another interesting direction is to improve our model, or even to propose a new one

altogether. One may, for instance, introduce a nonuniform supply constraint. In our
model, each cell supplies only one unit of the item. More generally, we can consider the
landscape function which specifies the price of an item at different supply levels.
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