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Abstract
Solving large-scale graph problems is a fundamental task in many real-world applications, and
it is an increasingly important problem in data analysis. For this reason, in the past few years
several big-data algorithms for graph problems have been proposed. Despite this large effort,
for many classic graph problems we still do not know how to design algorithms that use only a
sublinear number of machines and space in the input size. Specifically when the input graph is
large and sparse, which is indeed the case for many real-world graphs, it becomes impossible to
store and access all the vertices in one machine — something that is often taken for granted in
designing algorithms for massive graphs. The theoretical model that we consider is the Massively
Parallel Communications (MPC) model which is a popular theoretical model of MapReduce-like
systems.

Dynamic programming is a powerful algorithmic technique that, in the context of graph prob-
lems, is specifically useful for trees – an important special case of sparse graphs. However, these
algorithms are often inherently sequential. In this paper, we give an algorithmic framework to
adopt a large family of such dynamic programs on MPC. We start by introducing two classes of
dynamic programming problems, namely “(poly log)-expressible” and “linear-expressible” prob-
lems. We show that both classes can be solved efficiently using a sublinear number of machines
and a sublinear memory per machine. To achieve this result, we introduce a series of techniques
that can be plugged together. To illustrate the generality of our framework, we implement in
Õ(logn) rounds of MPC, the dynamic programming solution of fundamental problems such min-
imum bisection, k-spanning tree, maximum independent set, longest path, etc., when the input
graph is a tree.

To further motivate the importance of trees, we would like to mention the line of work in
embedding general graphs into trees, which allow for approximation algorithms of a large family
of connectivity and cut graph problems via trees and their parallel implementations.
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1 Introduction

With the inevitable growth of the size of datasets to analyze, the rapid advance of distributed
computing infrastructure and platforms (such as MapReduce, Spark [48], Hadoop [46],
Flume [18], etc.), and more importantly the availability of such infrastructure to medium-
and even small-scale enterprises via services at Amazon Cloud and Google Cloud, the need
for developing better distributed algorithms is felt far and wide nowadays. The past decade
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has seen a lot of progress in studying important computer science problems in the large-scale
setting, which led to either adapting the sequential algorithms to distributed settings or at
times designing from scratch distributed algorithms for these problems [3, 6, 16, 21, 17].

Despite this trend, we still have limited theoretical understanding of the status of several
fundamental problems when it comes to designing large-scale algorithms. In fact, even simple
and widely used techniques such as the greedy approach or dynamic programming seem
to suffer from an inherent sequentiality that makes them difficult to adapt in parallel or
distributed settings on the aforementioned platforms. Finding methods to run generic greedy
algorithms or dynamic programming algorithms on MapReduce, for instance, has broad
applications. This is the main goal of this paper.

Model. We consider the most restrictive model, called Massively Parallel Communication
orMPC, among previously studied MapReduce-like models [31, 26, 13], which is “arguably
the most popular” one [29]. Let n denote the input size and let m denote the number of
available machines which is given in the input.1 At each round, every machine can use a
space of size s = Õ(n/m) and run an algorithm that is preferably linear time (but at most
polynomial time) in the size of its memory.2 Machines may only communicate between the
rounds, and no machine can receive or send more data than its memory.

Recently, Im, Moseley, and Sun [29] initiated a principled framework for simulating
sequential dynamic programming solutions of Optimal Binary Search Tree, Longest Increasing
Subsequence, and Weighted Interval Selection problems on the MapReduce setting. This is
quite an exciting development, however, it is not clear whether similar ideas can be extended
to other problems and in particular to natural and well-known graph-theoretic problems. It
has in fact already been observed [34, 3] that many graph problems can be solved if the input
graph is dense (i.e., the number of edges is superlinear in the number of nodes). In contrast,
sparse graphs are much harder to handle. To see this, recall that the machines are assumed
to have sublinear (in the input size) memory. This implies that if the input graph is sparse,
e.g., if |E| = O(|V |), we are unable to access all the vertices of the graph in one machine. A
widely accepted conjecture in the literature is that computing any non-trivial property (such
as connectivity) of general (i.e., not necessarily dense) graphs requires Ω(logn) rounds of
MPC (see e.g., [47] for a formal statement of the conjecture). In fact, we show that even for
the seemingly easy special case of trees, designing efficient distributed algorithms requires
involved approaches.

To further emphasize the importance of sparse graphs in designing distributed algorithms,
note that most of the real-world massive graphs are indeed sparse. As an example, the social
network graph of Facebook has billions of vertices (i.e., users) whereas the average degree of
each vertex (i.e., the number of connections of each user) is approximately 190 [43].

In this paper, we give an algorithmic framework that could be used to simulate many
natural dynamic programs on trees. Indeed we formulate the properties that make a dynamic
program (on trees) amenable to our techniques. These properties, we show, are natural
and are satisfied by many known algorithms for fundamental optimization problems. To
illustrate the generality of our framework, we design Õ(logn) round algorithms for famous
graph problems on trees, such as, minimum bisection, minimum k-spanning tree, maximum

1 We assume there exists a small constant 0 < δ < 1 for which the number of machines is always greater
than nδ (otherwise there is no point in designing a distributed algorithm).

2 We assume that the available space on each machine is more than the number of machines (i.e., m ≤ s
and hence m = O(

√
n)). It is argued in [6] that this is a realistic assumption since each machine needs

to have at least the index of all the other machines to be able to communicate with them. Also, as
argued in [29], in some cases, it is natural to assume the total memory is Õ(n1+ε) for a small 0 < ε < 1.
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weighted matching, longest path, minimum vertex cover, maximum independent set, facility
location, k-center, etc.

Being able to solve a problem on trees is a useful and versatile technique with far-reaching
consequences in solving or approximating problems on general graphs. Due to the line of
work [9, 10, 4, 22, 39] in embedding general graphs into trees, we can embed graph metrics
into trees in such a way that all distances are preserved up to a factor of O(logn) on average.
As a result, often a factor of O(logn) appears in approximation algorithms of connectivity
problems when we go from trees to general graphs. Räcke [39] extended embedding into
trees for cut problems as well. Later the results for both connectivity and cut problems were
extended to subtrees of the original graph [5, 14, 19]. Blelloch, Gupta, and Tangwongsan [14]
show how the probabilistic tree embeddings can be computed in parallel. These algorithms,
however, are yet to be adopted to the model that we consider and are beyond the scope of
this paper which focuses on systematically adopting dynamic programs on trees.

1.1 Related Work
Though so far several models for MapReduce have been introduced (see, e.g., [23, 6, 25, 26,
30, 38, 41]), Karloff, Suri, and Vassilvitskii [31] were the first to present a refined and simple
theoretical model for MapReduce. In their model, Karloff et al. [31] extract only key features
of MapReduce and bypass several message-passing systems and parameters. This model has
been extended since then [13, 6, 41] (in this paper we mainly use the further refined model
by Andoni, Nikolov, Onak, and Yaroslavtsev [6]) and several algorithms both in theory and
practice have been developed in these settings, often using sketching [27, 30], coresets [12, 36]
and sample-and-prune [33] techniques. Examples of such algorithms include k-means and
k-center clustering [8, 12, 28], general submodular function optimization [20, 33, 37] and
query optimization [13].

Thanks to their common application to data mining tasks, distributed algorithms on
graphs have received a lot of attention. In [34] Lattanzi, Moseley, Suri and Vassilvitskii,
propose algorithms for several problems on dense graphs. Subsequently other authors study
graph problems in the MapReduce model [3, 2, 7, 15, 35] but almost all the solutions apply
only to dense graphs. In contrast in this paper we present a framework to solve optimization
problems on sparse graphs using strictly sublinear space.

Another related area of research is the design of parallel algorithms. Parallel algorithms,
instead of distributing the work-load into different machines, assume a shared memory is
accessible to several processors of the same machine. Roughly speaking, MapReduce models
are more powerful in the sense that they combine parallelism with sequentiality. That
is, the internal computation of the machines is free and we only optimize the rounds of
communication. In this work, we use the internal computation of the machines in a crucial
way to design a unified and general framework to implement a large family of sequential
dynamic programs on MPC. We are not aware of any similar framework to parallelize
dynamic programs in purely parallel settings.

1.2 Organization
We start with an overview of our results and techniques in Section 2. We give a formalization
of dynamic programming classes in Section 3. Then in Section 4 we show how to solve a
particular class of problems which we call (poly log)-expressible problems. In Section 5 we
show how to solve a more general class of problems, namely, linear-expressible problems.
Due to space limitations, we leave most of the detailed proofs and examples to the appendix.

ICALP 2018
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2 Main Results & Techniques

We introduce a class of dynamic programming problems which we call f -expressible problems.
Here, f is a function and we get classes such as (poly log)-expressible problems or linear-
expressible problems. Roughly speaking, f is proportional to the amount of data that each
node of the tree stores in the dynamic program. Thus, linear-expressible problems are
generally harder to solve than (poly log)-expressible problems. (See Section 3 for the formal
definition of these classes.)

(poly log)-Expressible Problems. Many natural problems can be shown to be (poly log)-
expressible. For example, the following graph problems are all (poly log)-expressible if
defined on trees: maximum (weighted) matching, vertex cover, maximum independent set,
dominating set, longest path, etc. Intuitively, the dynamic programming solution of each
of these problems, for any vertex v, computes at most a constant number of values. Our
first result is to show that every (poly log)-expressible problem can be efficiently solved in
MPC. As a corollary of that, all the aforementioned problems can be solved efficiently on
trees using the optimal total space of Õ(n).

I Theorem 1. For any given m, there exists an algorithm to solve any (poly log)-
expressible problem in Õ(logn) rounds ofMPC using m machines, such that with high
probability each machine uses a space of size at most Õ(n/m) and runs an algorithm that
is linear in its input size.

Proof sketch. The first problem in solving dynamic programs on trees is that there is
no guarantee on the depth of the tree. If the given tree has only logarithmic depth one
can obtain a logarithmic round algorithm by simulating a bottom-up dynamic program in
parallel, where nodes at the same level are handled in the same round simultaneously. This is
reminiscent of certain parallel algorithms whose number of rounds depends on the diameter
of the graph.

Unfortunately the input tree might be quite unbalanced, with superlogarithmic depth.
An extreme case is a path of length n. In this case we can partition the path into equal
pieces (despite not knowing a priori the depth of each particular node), handling each piece
independently, and then stitching the results together. Complications arise, because the
subproblems are not completely independent. Things become more nuanced when the input
tree is not simply a path.

To resolve this issue, we adopt a celebrated tree contraction method of parallel computing
to our model. Roughly speaking, the algorithm decomposes the tree into pieces of size
at most Õ(m) (i.e., we can fit each component completely on one machine), with small
interdependence. Omitting minor technical details, the latter property allows us to almost
independently solve the subproblems on different machines. This results in a partial solution
that is significantly smaller than the whole subtree; therefore, we can send all these partial
solutions to a master machine in the next round and merge them.

Linear-Expressible Problems. Although many natural problems are indeed (poly log)-
expressible, there are instances that are not. Consider for example the minimum bisection
problem. In this problem, the goal is to assign two colors (blue and red) to the vertices in
such a way that minimizes the total weight of the edges between blue vertices and red vertices
while half of the vertices are colored red and half of the vertices are colored blue. In the
natural dynamic programming solution of this problem, for a subtree T of size nT , we store
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O(nT ) different values. That is, for any i ∈ [nT ], the dynamic program stores the weight
of the optimal coloring that assigns blue to i vertices and red to the rest of nT − i vertices.
This problem is not necessarily (poly log)-expressible unless we find another problem specific
dynamic programming solution for it. However, it can be shown that minimum bisection, as
well as many other natural problems, including k-spanning-tree, k-center, k-median, etc., are
linear-expressible.

It is notoriously more difficult to solve linear-expressible problems using a sublinear
number of machines and a sublinear memory per machine. However, we show that it is still
possible to obtain the same result using a more involved algorithm.

I Theorem 2 (Main Result). For any given m, there exists an algorithm to solve any
linear-expressible problem that is splittable in Õ(logn) rounds ofMPC using m machines,
such that with high probability each machine uses a space of size Õ(n4/3/m), and runs an
algorithm that is polynomial in its space size for some 0 < ε < 1.

Proof sketch. Recall that linear-expressibility implies that the dynamic programming data
on each node, can be as large as the size of its subtree (i.e., even up to O(n)). Therefore,
even by using the tree decomposition technique, the partial solution that is computed for
each component of the tree can be linear in its size. This means that the idea of sending all
these partial data to one master machine, which worked for (poly log)-expressible problems,
does not work here since when aggregated, they take as much space as the original input.
Therefore we have to distribute the merging step among the machines.

Assume for now that each component that is obtained by the tree decomposition algorithm
is contracted into a node and call this contracted tree. The tree decomposition algorithm has
no guarantee on the depth of the contracted tree and it can be super-logarithmic; therefore
a simple bottom-up merging procedure does not work. However, it is guaranteed that the
contracted tree itself (i.e., when the components are contracted) can be stored in one machine.
Using this, we send the contracted tree to a machine and design a merging schedule that
informs each component about the round at which it has to be merged with each of its
neighbours. The merging schedule ensures that after O(logn) phases, all the components are
merged together. The merging schedule also guarantees that the number of neighbours of
the components, after any number of merging phases, remains constant. This is essential to
allow (almost) independent merging for many linear-expressible problems such as minimum
bisection.

Observe that after a few rounds, the merged components grow to have up to Ω(n) nodes
and even the partial data of one component cannot be stored in one machine. Therefore,
even merging the partial data of two components has to be distributed among the machines.
For this to be possible, we use a splitting technique of independent interest that requires
a further splittability property on linear-expressible problems. Indeed we show that the
aforementioned linear-expressible problems, such as minimum bisection and k-spanning tree,
have the splittability property, and therefore Theorem 2 implies they can also be solved in
Õ(logn) rounds ofMPC.

3 Dynamic Programming Classes

To understand the complexity of different dynamic programs in theMPC model, we first
attempt to classify these problems. The goal of this section is to introduce a class of problems
which we call f -expressible problems.

ICALP 2018
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We say a problem P is defined on trees, if the input to P is a rooted tree T , where each
vertex v of T may contain data of size up to poly(logn), denoted by v.data.3

Dynamic programming is effective when the solution to the problem can be computed
recursively. On trees, the recursion is usually defined on the nodes of the tree, where each
node computes its data using the data provided by its children. Let DP denote a dynamic
program that solves a problem P that is defined on trees. Also let PT be an instance of P
and denote its input by T . We use DP (T ) to denote the solution of PT and use DP (v) to
denote the dynamic data that DP computes for a vertex v of T . The first property that we
define is “binary adaptability”.

Binary Adaptability. To illustrate when this property holds, consider any vertex v of an
input tree and a given ordering of its children (u1, u2, . . . , uk) and let D(u) denote the dynamic
data of vertex u. As long as the operation to compute the dynamic data of v could be viewed
as an aggregation of binary operations over the dynamic data that is provided by its children
in the given order, i.e., D(v) = f1(D(u1), f2(D(u2), . . .)), this property is satisfied. (For
example, max {D(u1),D(u2),D(u3)} could be viewed as max{D(u1),max{D(u2),D(u3)}}).
Most of the natural dynamic programs satisfy this property.

To formally state this property, we first define “binary extensions” of trees and then
define a problem to be binary adaptable if there exists a dynamic programming solution that
given any binary extension of an input, calculates the solution of the original tree.

I Definition 3 (Binary Extension). A binary tree T b is a binary extension of a tree T if there
is a one-to-one (and not necessarily surjective) mapping f : V (T )→ V (T b) such that f(v) is
an ancestor of f(u) in T b if v is an ancestor of u in T . We assume the data of each vertex v
in T is also stored in its equivalent vertex, f(v) in T b.

Intuitively, a binary extension of a tree T is a binary tree that is obtained by adding
auxiliary vertices to T in such a way that ensures any ancestor of each vertex remains its
ancestor.

I Definition 4 (Binary Adaptability). Let P be a problem that is defined on trees. Problem
P is binary adaptable if there exists a dynamic program DP where for any instance PT of P
with T as its input tree and for any binary extension T b of T , the output of DP (T b) is a
solution of PT . We say DP is a binary adapted dynamic program for P .

We are now ready to define f -expressiveness. We will mainly consider (poly log)-
expressible and linear-expressible problems in this paper, however the definition is general.

f-Expressiveness. This property is defined on the problems that are binary adaptable.
Roughly speaking, it specifies how large the data that we store for each subtree should be to
be able to merge subtrees efficiently.

I Definition 5 (f -Expressiveness). Let P be a binary adaptable problem and let DP be its
binary adapted dynamic program. Moreover, let T b be a binary extension of a given input
to P . For a function f , we say P is f -expressible if the following conditions hold.
1. The dynamic data of any given vertex v of T b has size at most Õ(f(nv)) where nv denotes

the number of descendants of v.

3 Consider weighted trees as an example of the problems that define an additional data on the nodes (in
case the edges are weighted, each vertex stores the weight of its edge to its parent).
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2. There exist two algorithms C (compressor), andM (merger) with the following properties.
Consider any arbitrary connected subtree T of T b and let v denote the root vertex of T . If
for at most a constant number of the leaves of T the dynamic data is unknown (call them
the unknown leaves of T ), algorithm C returns a partial data of size at most Õ(f(nT ))
for T (without knowing the dynamic data of the unknown leaves) in time poly(f(nT ))
such that if this partial data and the dynamic data of the unknown leaves are given to
M, it returns DP (v) in time poly(f(nT )).

3. For two disjoint subtrees T1 and T2 that are connected to each other with one edge, and
for subtree T = T1 + T2, if there are at most a constant number of the leaves of T that
are unknown, thenM(C(T1), C(T2)) returns C(T ) in time poly(f(nT )).

We remark that graph problems such as maximum (weighted) matching, vertex cover,
maximum independent set, dominating set, longest path, etc., when defined on trees, are all
(poly log)-expressible. Also, problems such as minimum bisection, k-spanning tree, k-center,
and k-median are linear-expressible on trees.

4 Warm-Up: Solving (poly log)-Expressible Problems

The first problem in solving dynamic programs on trees is that there is no guarantee on the
depth of the tree. If the given tree has only logarithmic depth one can obtain a logarithmic
round algorithm by simulating a bottom-up dynamic program in parallel, where nodes at
the same level are handled in the same round simultaneously. Unfortunately the input tree
might be quite unbalanced, with superlogarithmic depth.

To resolve this issue, we adopt a celebrated tree contraction method of parallel computing
to our model. Roughly speaking, the algorithm decomposes the tree into pieces of bounded
size, with small interdependence. The latter property allows us to almost independently solve
the subproblems. To remain self-contained, we describe the tree decomposition algorithm
and its proof in Appendix D. The following theorem is an informal restatement of the main
result of that section.

Theorem 30. (Informal restatement) There exists a randomized algorithm that converts
any given tree to a binary version of it and then decomposes the binary tree into connected
subgraphs of bounded size such that each subgraph can be stored in one machine and is
connected to at most 3 other subgraphs. For any given m, the algorithm uses m machines
and with high probability terminates in Õ(logn) rounds of MPC. Each machine uses a
memory of size at most Õ(n/m) and runs an algorithm that is linear in its memory size.

To motivate the need to use an involved decomposition algorithm, we first give hints
on why trivial approaches do not work. A natural (trivial) algorithm is to choose a set of
randomly selected joint edges (or vertices) and divide the tree based on them. Note that
the main difficulty is that we need to bound the size of the largest component with a high
probability. It could be shown that this trivial algorithm, even for the simple case of full
binary trees fails. More precisely, it could be shown that the size of the component that
contains the root is of size Ω(n) (instead of Õ(n/m)) with a high probability.

Overview of Tree Decomposition. At first, the input tree is converted into a binary
tree. To do this, the algorithm first computes the degree of each vertex and then adds the
needed auxiliary vertices to it. After that, roughly, the challenge is that the vertices have
little knowledge about their status in the tree (e.g., they do not know their depth) and all
the decomposition happens using the local information that is accessible to the vertices. To
do this, the algorithm proceeds in phases (not rounds). In each phase, the algorithm selects a

ICALP 2018
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subset of vertices based on a set of local rules such as their degree, status of their parent, etc.
Next, each vertex is merged to its closest selected ancestor. Interestingly, it can be proved
that in fact these local rules guarantee that the size of the maximum component is bounded
by Õ(n/m) with high probability.

After decomposing the tree into pieces that each can be stored in one machine, we can
solve (poly log)-expressible problems as follows. We first use the compressor algorithm that
is guaranteed to exist for (poly log)-expressible problems and store a data of size at most
poly log(n) bits for each component. Then in the next step, since there are at most Õ(m)
components, we can send the partial data of all components into one machine. Then in
only one round, we merge all these partial data sequentially in one machine; obtaining the
following result.

Theorem 1. For any given m, there exists an algorithm to solve any (poly log)-expressible
problem in Õ(logn) rounds ofMPC using m machines, such that with high probability each
machine uses a space of size Õ(n/m) and runs an algorithm that is linear in its input size.

For space limits, we defer the formal proof of this theorem and examples of (poly log)-
expressible problems to Appendix A.

5 Solving Linear-Expressible Problems

5.1 The Splittability Property
The main goal of this section is to define a property called “splittability” for linear-expressible
problems, that indeed holds for the aforementioned linear-expressible problems and prove,
by using a total memory of Õ(n4/3), we are able to parallelize linear-expressible problems
that are splittable in Õ(logn) rounds. The main reason behind the need to define this extra
property for linear-expressible problems, is that in contrast to (poly log)-expressible problems,
the partial data of the subtrees in linear-expressible problems might have a relatively large
size, hence when merging two subtrees, we are not able to access their partial data in one
machine. As a result, we need to be able to distribute the merging step among different
machines. It is worth mentioning that we prove the total memory of Õ(n4/3) is in some sense
tight, unless we limit the number of machines to be too small, which defeats the purpose of
MapReduce, which is to have maximum possible parallelization.

Intuitively, a problem instance P is splittable if it is possible to represent it with a set
of n objects such that the output of the problem depends only on the pair-wise relations of
these objects. In the DP context, the splittability property is useful for linear-expressible
problems. The splittability property ensures that these partial data can be effectively merged
using the splitting technique.

I Definition 6 (Splittability). Consider a linear-expressible problem P and a binary adapted
dynamic program DP for it. We know since P is a linear-expressible problem, for any subtree
T of T b with nT vertices, a compressor function returns a partial data of size at most Õ(nT )
if at most a constant number of the leaves of T are unknown. Denote this partial data by
C(T ). We say problem P is splittable, if for any given connected subtree T ′ of T b, the partial
data C(T ′) can be represented as a vector ~C(T ′) of at most Õ(nT ′) elements such that for any
connected subtrees T1 and T2 of T b that are connected with an edge (with T being T1 + T2)
the following condition holds. There exist two algorithms S (sub unifier) and U (unifier)
such that for any consecutive partitioning (P1, P2, . . . , Pk1) of ~C(T1) and any consecutive
partitioning (Q1, Q2, . . . , Qk2) of ~C(T2),
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1. Algorithm S(Pi, Qj) returns a vector of size at most |Pi|+ |Qj | in time poly(|Pi|+ |Qj |)
such that each element of this vector “affects” at most one element of ~C(T ).

2. Given the elements in S(Pi, Qj) that “affect” an element a in ~C(T ) for every 1 ≤ i ≤ k1
and 1 ≤ j ≤ k2, U computes the value of element a using linear space and polynomial
time in input size.

The linear-expressible problems such as minimum bisection, k-spanning tree, etc., that
we have mentioned before are all indeed splittable. For the proof and concrete examples of
unifier and sub unifier algorithms see Appendix B.

5.2 Solving Splittable Linear-Expressible Problems
We show with a slightly more total space (the space on each machine is still sublinear) it is
possible to design parallel algorithms in Õ(logn) rounds for linear-expressible problems if
they are splittable.

Theorem 2. For any given m, there exists an algorithm to solve any linear-expressible
problem defined on trees that is also splittable, in Õ(logn) rounds ofMPC using m machines,
such that with high probability each machine uses a space of size Õ(n4/3/m), and runs an
algorithm that is polynomial in its input size.

As a corollary of Theorem 2, we give logarithmic round algorithms for minimum bisection,
and k-spanning tree problems using an overall space of Õ(n1+ε) for some constant ε < 1.

Our algorithm, similar to the algorithm given for (poly log)-expressible problems starts
with decomposing a binary extension of the input tree. However, note that for linear-
expressible problems, we cannot store the data of all components in one machine since the
space limit will be violated. (The size of the total data would be roughly the same as the
size of input.) Therefore we merge the components in multiple rounds. Unfortunately, the
components tree could be unbalanced. To overcome this difficulty, we first partition the
components tree. This partitioning of the components tree, specifies which components
at which rounds, should be merged together. The merging process cannot be done in one
machine either. Mainly because the partial data of even one component could be very large.
Using the splittability property we distribute the data of the components among the machines
and merge them in parallel.

We first prove the partitioning lemma and then prove Theorem 2.

I Definition 7 (border vertices). For any subtree T of a given tree T , the border vertices
are the set of vertices in V (T ) that are connected with an edge of tree T to a vertex in
V (T )− V (T ).

I Lemma 8. There exists a linear time algorithm that given a binary tree T with nT
vertices, and a set of border vertices ST ∈ V (T ) with size at most 3, finds a partitioning
PT = 〈H1, H2, . . . ,Hc〉 of T , such that |V (Hi)| ≤ 2nT

3 for any i ≤ c, and the total number
of border vertices of any Hi based on (PT , ST ) is at most 3.

We defer the proof of Lemma 8 to the appendix. We are now ready to prove Theorem 2.

Proof of Theorem 2. Let T denote the input tree. Since any linear-expressible problem is
binary adaptable, there exists a dynamic program DP where for the instance PT of P with
T as its input tree and for any binary extension T b of T , the output of DP (T b) is a solution
of PT . We convert T to its binary extension T b in O(1) round ofMPC such that with high
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probability each machine uses space Õ(n/m) (see Lemma 26 in the appendix). Since the
output of DP is a solution of PT , it suffices to solve DP .

The first stage in this algorithm is decomposing tree T b, which by Theorem 30 is possible
in Õ(logn) round ofMPC such that with high probability each machine uses Õ(n/m) time
and space. Let C(T b) denote the set of components in decomposition of T b by Definition 29,
and let T c denote the rooted component tree that is given by contracting all components in
C(T b). Roughly speaking, we partition T c to at most three subtrees T 1, T 2, and T 3, such
that max3

i=1 |T i| ≤ 2
3 |T

c|, and max3
i=1 |Bi| ≤ 3, where Bi denotes the set of border vertices

in T i. We find the partial dynamic data for these partitions recursively and we merge them
to find the dynamic data for T c. Algorithm 1 is the overview of this algorithm.

Algorithm 1
1: procedure SolveLinearExpressible(T )
2: Decompose T b and let C(T b) denote the set of components in decomposition of T b.
3: Let T c be the component tree that is given by contracting all components in C(T b) .
4: GetDynamicData(T c, ∅)
5: procedure GetDynamicData(T , B) . B is the set of border vertices in V (T )
6: if |T | = 1 then
7: Based on B, compute and return the dynamic data for T .
8: else
9: Partition T to partitions T 1, T 2, and T 3, such that (1) max3

i=1 |T i| ≤ 2
3 |T |, (2)

max3
i=1 |Bi| ≤ 3 where Bi denotes the set of border vertices in T i.

10: for every i in {1, 2, 3} do
11: Di ← GetDynamicData(Ti, Bi)
12: Compute the dynamic data for T , by merging D1, D2, and D3, and return it.

Partitioning stage. The second stage of our algorithm partitions T c using the algorithm
given in Lemma 8. Let nc denote the number of vertices of tree T c. Starting from T c, in
each step, we partition the remaining subtrees by removing one edge from each and repeat
this until we have nc disjoint vertices. Since each sub-tree is split into sub-trees of a constant
fraction size of it, this stage halts after O(lognc) steps, so the overall running time of this
stage is Õ(nc) ≤ Õ(m). At the end of this stage, for each edge e of T c, we store in which
step it was deleted and use this data to design an algorithm to merge the dynamic data of
the sub-trees and finally find an optimal solution for T d. More precisely, after this stage, the
edges of T c are partitioned into subsets E1, E2, . . . , E2S where S = O(logn) is the number
of steps this stage takes, and for any i ∈ [S], E2i−1 and E2i are respectively the set of edges
deleted by Algorithm 3 and Algorithm 4 in the (S − i+ 1)-th step of this stage. We store
E1, E2, . . . , E2S in any machine inM without violating the memory limits since the total
number of edges of T c is at most Õ(m)

The third stage of the algorithm is the merging stage that runs exactly in the reverse
order of the previous stage. Starting from single vertices of T c, which are equivalent to
components in C(T b), in the first round, the algorithm continues to merge the dynamic data
of two subtrees if there exists an edge e ∈ E1 that connects them. Note that the size of any
component in C(T b) is at most Õ(n/m), so it is possible to find its partial dynamic data in
one machine.

Let vector D(T ) denote the dynamic data (It is the partial dynamic data if there is any
unknown data in T .) for any subtree T . Since the maximum number of border vertices for
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any partition is a constant, by linear-expressible (Definition 5) we can store the dynamic
data for any partition in linear space to the size of the partition. Moreover by the same
definition, if T = T1 + T2 it is possible to construct the dynamic data for T by merging the
dynamic data for T1 and T2. Note that to update the dynamic data for any sub-tree T , we
have to update O(|V (T )|) different values, and to update each of them, it is possible that
we need more thanO(n/m) space. This unfortunately cannot be done in one machine since
it violates the memory limit of O(n1+ε) on each machine. To handle this issue we use the
following method to merge the dynamic data of two components.

Merging stage. This stage of algorithm takes 2R steps. Intuitively, for any 1 ≤ r ≤ 2R
and for any edge in Er that is between two partitions T ri and T rj , in the first round of
step r we assign any machine a portion of dynamic data of T ri and T rj . This machine is
responsible to merge these two portions using the function S (sub unifier)in Definition 6.
Let T r+1 be the subtree which is the result of merging subtrees T ri and T rj in step r, and
let D(T ri )[b] denote the b-th element of vector D(T ri ). More precisely, for any two positive
integers k1, k2 ≤ d

√
me dynamic data D(T ri )[(k1 − 1)αi : k1αi] and D(T rj )[(k2 − 1)αj : k2αj ]

is assigned to machine µ with index k1
√
m+ k2, where for any i, αi = |T ri |/

√
m. (For any

subtree T and any two positive integers a, b such that a < b D(T )[a : b] denotes the sub-vector
(D(T )[a], . . . , D(T )[b]).) This machine is responsible to merge the given portion of dynamic
data and generate Dµ(T ), such that |Dµ(T )| = O(D(T ri ) + D(T rj )), and any element in
Dµ(T ) affects at most one element in D(T ). This is possible by function S. Therefore to
compute D(T )[a] for any valid a in one round of MPC it suffices if for every µ ∈ M we
have the element in Dµ[T ] that affects D(T )[a] (if there exists any) in the same machine,
and then use the function U (unifier). To achieve this for any T r+1 in the set of partitions
of T b in round r and for any a ≤ |V (T r+1)| we assign each D(T r+1)[a] a unique index in
[|V (T b)|] generated based on T r+1 and a. Using this index and a hash function h chosen
uniformly at random from a family of logn−universal hash functions, we distribute pairs of
(T r+1, a) over all m machines, and any machine µ sends at most one element of Dµ

c (T r+1)
that affects D(T r+1)[a] to the machine µ′ iff pair (T r+1, a) is assigned to machine µ′ using
hash function h. Therefore, all the data needed to compute D(T r+1)[a], is gathered in one
machine, and in the second round of r-th step, we run function U on all the machines to
compute the dynamic data of T r+1.

Time and space analysis. By Lemma 26 and Theorem 30 it is possible to convert any
given tree to a binary extension of it, and decompose the binary extension in Õ(logn) rounds
ofMPC using m machines, such that with high probability, each machine uses a memory
of size at most Õ(n1+ε/m) and runs an algorithm that is linear in its memory size. Since
the size of the component tree T c is O(m), and the partitioning stage takes S = O(logn)
steps, by 8 it is possible to do the partitioning stage of the algorithm using Õ(n1+ε/m)
time and space in O(1) round. (Note that Õ(m) ≤ Õ(n1+ε/m).) In addition, the merging
stage of the algorithm takes S = O(logn) round, and the space needed on each machine is
Õ(n1+ε/m). Since in round r each vertex in T b is at most in one partition, the total size of
the partitions in one round is O(n). Note that, the dynamic data of each partition is linear
to its size. Therefore when in the first round of any step r ∈ [2R] of merging we assign each
machine O(1/

√
m) portion of the dynamic data of each partition, the overall data assigned

to each machine is O(n/
√
m). We set ε = 1

3 . Since m < n(1+ε)/2 it is easy to see that
O(n/

√
m) ≤ O(n1+ε/m), so computing function Sin each round takes O(n1+ε/m) space and

poly(n1+ε/m) time in any machine. Moreover, with high probability the data assigned to
each machine in the second round of any step r is Õ(n1+ε/m) since we distribute any pair of
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partition T in step r and a ≤ |T | using a hash function h chosen uniformly at random from
a family of logn−universal hash functions. The maximum data that any machine receives
for any pair (T, a) that is assigned to it by hash function h is at most O(m) and the overall
data assigned to all the machines is O(n

√
m). Note that, O(n

√
m) ≤ O(n1+ε). Therefore by

Lemma 21 with high probability the maximum load over all the machines is Õ(n1+ε/m), so
each machine takes Õ(n1+ε/m) space and poly(n1+ε/m) time to compute unifier for all the
pairs (T, a) that are assigned to it in any round. J

We further show, in details, how these techniques could be used to solve the minimum
bisection problem on trees. For space limitations, we defer the discussion about minimum
bisection to appendix.
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A (poly log)-Expressible Problems

The goal of this section is to prove and give examples of Theorem 1. Let us first re-state the
theorem.

Theorem 1. For any given m, there exists an algorithm to solve any (poly log)-expressible
problem in Õ(logn) rounds ofMPC using m machines, such that with high probability each
machine uses a space of size Õ(n/m) and runs an algorithm that is linear in its input size.

Proof. Assume we are given a (poly log)-expressible problem P . We first convert the given
tree into a binary extension of it using Lemma 26 in O(1) rounds and then decompose the
binary extension using Theorem 30 in Õ(logn) rounds. Note that since any component
has at most two children (Claim 34), there are at most 2 leaves in any component that is
unknown. Therefore we can use the compressor algorithm that is guaranteed to exist since P
is assumed to be (poly log)-expressible and store a data of size at most poly log(n) for each
component. Then in the next step, since there are at most Õ(m) components, we can send
the partial data of all components into one machine. Then in only one round, we are able
to merge all this partial data since the merger algorithm (that is guaranteed to exist since
P is (poly log)-expressible) takes polylogarithmic time and space to calculate the answer of
the dynamic programming for each of the components and it suffices to start from the leave
components and compute the value of the dynamic programming for each of them one by
one (all of this is done in one step because we have the data of all the components in one
machine). J

We first formally prove why Maximum Weighted Matching is a (poly log)-expressible
problem and therefore as a corollary, it can be solved in Õ(logn) rounds.

Maximum Weighted Matching. An edge-weighted tree T is given in the input. (Let
we denote the weight of an edge e.) The problem is to find a sub-graph M of T such that
the degree of each vertex in M is at most one and the weight of M (which is

∑
e∈M we) is

maximized.
At first, we explain the sequential DP that given any binary extension T b (see Definition

24) of an input tree T , finds a maximum matching of T and then prove this DP is (poly log)-
expressible.

Define a subset M b of the edges of T b to be an extended matching if it has the following
properties. 1. For any original vertex in T b, at most one of its edges is in M b. 2. For any
auxiliary vertex v of T b, at most one of the edges between v and its children is in M b. 3. The
edge between an auxiliary vertex v and its parent is in M b if and only if an edge between v
and one of its children is in M b.

Consider an edge e between a vertex u and its parent v in T b. If u is an auxiliary vertex,
we define we to be 0 and if v is an original vertex, we define we to be the weight of the edge
between v′ and its parent where v′ is the vertex in T that is equivalent to v. Furthermore,
we define the weight of an extended matching M b of T b to be

∑
e∈Mb we.

Let M b be an extended matching of T b and let M be a matching of T b; we say M b and
M are equivalent if for any edge (u, v) ∈M , every edge between the equivalent vertices of
v and u in T b is in M b and vice versa. Let v′, u′ ∈ V (T b) denote the equivalent vertices
of v, u ∈ V (T ) respectively. If v is the parent of u in T , all the other vertices in the path
between v′ and u′ are auxiliary by definition of binary extensions. This means all the edges
in this path, except for the edge between u′ and its parent (which is equal to wu,v), have
weight 0. Therefore the weight of any extended matching of T b is equal to its equivalent
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matching of T . Hence, to find the maximum weighted matching of T , one can find the
extended matching of T b with the maximum weight.

Now, we give a sequential DP that finds the extended matching of T b with the maximum
weight. To do so, for any vertex v of T b, define C(v) to be the maximum weight of an
extended matching of the subtree of v where at least one edge of v to its children is part of
the extended matching (if no such extended matching exists for v set C(v) to be −∞. Also
define C ′(v) to be the maximum weight of an extended matching of the subtree of v where
no edge of v to its children is part of the extended matching.

The key observation in updating C(v) and C ′(v) for a vertex v is that if v is connected
to one of its original children u, then u should not be connected to its children; if v is

To update C(v) and C ′(v), if v has no children, then C(v) = −∞ and C ′(v) = 0, also if
v has only one child u, then C(v) = w(v,u) and C ′(v) = 0. W.l.o.g. we consider the following
three cases for the case where v has two children u1 and u2.

If u1 and u2 are both original vertices, then

C(v) = max {wv,u1 + C ′(u1) + C(u2), wv,u2 + C ′(u2) + C(u1)},

C ′(v) = max {C(u1), C ′(u1)}+ max {C(u2), C ′(u2)}.

If u1 and u2 are both auxiliary vertices, then

C(v) = max {wv,u1 + C(u1) + C ′(u2), wv,u2 + C(u2) + C ′(u1)},

C ′(v) = max {C ′(u1), C ′(u2)}.

If u1 is auxiliary and u2 is an original vertex, then

C(v) = max
{
wv,u1 + C(u1) + max {C ′(u2), C(u2)}, wv,u2 ,+C ′(u2) + C ′(u1)}

}
,

C ′(v) = C ′(u1) + max {C(u2), C ′(u2)}.

Now we prove that the (poly log)-expressiveness property holds for the proposed DP.
Consider a subtree T of T b and let u1 and u2 denote the leaves of T with the unknown DP
values. We apply the proposed DP rules and calculate the DP values as functions of C(u1),
C ′(u2), C(u2), and C ′(u2) instead of plain numbers. We claim that for any vertex v of T
there exist functions fv, f ′v : {0, 1}4 → Z such that

C(v) = max
ai∈{0,1}

{a0C(u1) + a1C
′(u1) + a2C(u2) + a3C

′(u2) + fv(a0, a1, a2, a3)},

and

C ′(v) = max
ai∈{0,1}

{a0C(u1) + a1C
′(u1) + a2C(u2) + a3C

′(u2) + f ′v(a0, a1, a2, a3)}.

Therefore it suffices to store the values of functions f ′r and fr for the root vertex r of T to be
able to evaluate C(v) and C ′(v). Since fr and f ′r take only 16 different input combinations,
there are only O(1) different output values to be stored.

I Corollary 9. For any given m, there exists an algorithm to solve the Maximum Weight
Matching problem on trees in Õ(logn) rounds of MPC using m machines, such that with
high probability each machine uses a space of size Õ(n/m) and runs an algorithm that is
linear in its input size.
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Other problems. The dynamic programming solutions of Maximum Independent Set,
Minimum Vertex Cover, Longest Path and many other problems are similar to the proposed
DP for Maximum Weighted Matching. For example, for the Maximum Independent Set
problem, we only need to keep two dynamic data, whether the root vertex of a subtree is
part of the independent set in its subtree or not and for each of these cases what is the size
of the maximum independent set in the subtree. Roughly speaking, the only major difference
in the DP is that we have to change max to sum.

I Corollary 10. For any given m, there exists algorithms to solve the Maximum Independent
Set, Minimum Vertex Cover, Longest Path and Dominating Set problems on trees in Õ(logn)
rounds ofMPC using m machines, such that with high probability each machine uses a space
of size Õ(n/m) and runs an algorithm that is linear in its input size.

B Linear-Expressible Problems

We continue the discussion about linear-expressible problems by giving a detailed proof that
the minimum bisection problem can be solved in logarithmic rounds.

B.1 Minimum Bisection
I Theorem 11. There exists an algorithm to solve bisection in Õ(logn) rounds of MPC
using m machines, such that with high probability each machine uses Õ(n4/3/M) space, and
takes O(n2/m) time in each round of the algorithm.

Proof. While converting T to binary version of it, for any auxiliary vertex a we set the
weight of the edge between a and its parent to be ∞. Note that in any optimal solution for
the new tree, the infinity weights enforce all auxiliary vertices to be in the same bisection
set that their parents are, thus any solution for the original tree will have the same cost for
the binary tree as long as we make sure the auxiliary vertices are in the same set that their
parents are (otherwise the cost will be ∞). Recall that in the bisection’s solution the number
of vertices of the two sets should be equal, hence we have to keep track of the auxiliary
vertices that we added to the tree and make sure we do not count them.

The dynamic data Dc(Ti)[b], for any partition (sub-tree) Ti, and any possible coloring c
of its border vertices into red and blue sets, and any number b ≤ |V (Ti)|, is the minimum
cost of partitioning Ti such that the partitions match what is specified in c and there are
exactly b non-auxiliary vertices in the blue set. (Recall that the color of auxiliary vertices
will have to be the same as their parents or the cost would be ∞). Note that we fix the exact
coloring of border vertices by c to make it possible to merge the partial dynamic data for
two components. Two components are only connected through their border vertices and if
we know how the border vertices are colored, we will know if in a solution we have to add
the weight of the edges between border vertices to the cost or not. Note that there are at
most 4 border vertices in any partition so there are constant number of possible cases for c.
This implies that bisection is linear-expressible.

If we define the unifier (U) and the sub unifier (S) functions for the dynamic data stored
for each partition we obtain that bisection is also splittable (Definition 6). Let T be the
result of merging Ti and Tj , and let set D(T ′)[b] denote the set of all Dc(T ′)[b] for any
possible coloring c of border vertices in V (T ′), and any partition T ′. The function S for any
consecutive portion of D(Ti) from element D(Ti)[ai] to Dc(Ti)[bi] denoted by D(Ti)[ai : bi],
and any consecutive portion of D(Tj) denoted by D(Tj)[aj : bj ] is as follows: for any pair ki
and kj such that ai ≤ ki ≤ bi , aj ≤ kj ≤ bj , the value of pair (D(Ti)[ki], D(Tj)[kj ]) is only



M.H. Bateni et. al. XX:19

related to D(T )[ki + kj ]. Therefore, for any possible coloring c of border vertices of T , and
any number x such that ai + aj ≤ x ≤ bi + bj , S outputs a value for Dc(T )[x] which is the
maximum value for Dc(T )[x] based on the input given to this function. It is easy to see that
U for any c is the maximum of all its inputs that match with the color of border vertices c,
which is a function polynomial to its input.

At the end, maxcDc(T d)[n
′

2 ], where n′ is the number of non-auxiliary vertices of T , is
the solution we return.

Therefore, by Theorem 2 since bisection is linear- and splittable, there exists an algorithm
to solve bisection in Õ(logn) round ofMPC usingmmachines, such that with high probability
each machine uses Õ(n1+ε/M) space, and takes O(n2/m) time in each round of the algorithm,
for ε = 1

3 . J

Extensions. It could be shown that with very similar techniques, the “k-maximum spanning
tree" problem on a tree could also be solved. In this problem a weighted tree is given and
the goal is to find the maximum weighted connected subgraph of the given tree with exactly
k vertices. When we convert this tree to a binary tree we only need to make sure that
we mark auxiliary vertices such that we do not disconnect them from their parents in the
algorithm. Moreover, instead of considering all the possible coloring of the border vertices in
bisection, in the dynamic for k-maximum spanning tree, we need to consider all the cases for
the connectivity of the border vertices with the maximum weighted tree in the partition.

Furthermore, we expect that this idea can be extended to several other problems, including
facility location problem, minimum diameter, k partitioning, k-median, and k-center, because
they have very similar dynamic programming solutions when the input graph is a tree. We
refer the detailed discussion to the full version of the paper.

C Further Applications

C.1 Minimum Spanning Tree on Sparse Graphs
Finding the minimum spanning tree is a fundamental problem. In fact, it is one of the main
problems that Karloff et al. [31] focus on, when introducing the initial theoretical model of
MapReduce. In particular, they give a constant round algorithm to find the MST of dense
graphs. Moreover finding MST in metric spaces has been widely studied by [47, 6]. The total
memory that they use is linear to the input size, however they give approximation algorithms
for finding MST in limited metric spaces with limited dimensions. As it was noted before,
obtaining constant round algorithms for general graphs is very unlikely.

In this section, we show how our framework could be used in designing algorithms for
finding MST in general graphs. We first give an algorithm for finding exact MST in metric
spaces, with arbitrary number of dimensions. We also give an Õ(log2 n) round MST algorithm
for sparse graphs. We would like to note that, there already exist efficient PRAM algorithms
for minimum spanning tree problem [32] in sparse graphs. Coupling them with the simulation
methods of [31, 26] one can obtain distributed algorithms with almost the same round
complexity. However, our main purpose in this section, is to show how our framework could
be applied to sparse graphs.
I Theorem 12. Let V denote a set of vectors in d dimensional space and let f denote
a function that determines the distance between any two vectors u and v where f(u, v) is
computable in O(d) space. Given any m where m ≤ n2/3, there exists an algorithm to find
MST of V in Õ(logn) rounds of MPC using m machines, such that with high probability,
each machine uses a space of size at most Õ(d× n4/3/m).

ICALP 2018



XX:20 MapReduce Algorithms For Massive Trees

Proof. Let G denote the metric graph of vector set V . any vector in V represents a vertex
in G, and the weight of an edge between any two vertex u and v is f(u, v). We partition
the vertices into

√
m partitions, each of which containing n/

√
m vertices. Let p1, . . . , p√m

denote the partitions. For any i and j, where 1 ≤ i < j ≤
√
m, we put all the vertices in

pi and pj in one machine. Note that each partition is in exactly
√
m − 1 machines. Let

Mi,j denote the machine that contains pi and pj . In this machine we find the MST between
vertices in pi ∪ pj , and we denote it by Ti,j . By Lemma 13 any edge e that is in MST of
G is also in the MST between the vertices of at least one of the machines. The size of the
complete graph between the vertices in one machine is O((n4/3/m)2) so it does not fit in
a single machine. To overcome this, in each machine we generate edges sequentially. We
update the MST after generating any edge, and remove any edge that is not in the MST.

In the first round, the algorithm in any machine Mi,j is as follows: at the beginning Ti,j
is empty. For any pair of vertices u and v in pi ∪ pj , we compute f(u, v) in O(d) space which
is the wight of the edge ei,j . We then add eu,v to Ti,j . If there was a loop in Ti,j after adding
this edge, we update Ti,j by removing the edge with the maximum weight in this loop. Then
we remove any edge that is not in Ti,j . To run this algorithm in one machine we do not need
space more than O(d× n4/3/m), since we just store the edges of the MST. The size of the
MST in each machine is at most equal to the size of the vertices in that machine which is
O(d× n4/3/m).

After the first round of the algorithm there are O(n4/3/m) edges in each machine, which
is O(n4/3) in total. So, the problem of finding the MST of G is now reduced to finding an
MST in a graph that has n vertices and O(n4/3) edges. Since there exists an algorithm
that finds the MST of such a graph in Õ(logn4/3) = Õ(logn) rounds using m machines and
Õ(n4/3/m) space per machine, the number of rounds that we need to find the MST of G is
Õ(logn) as well.

J

I Lemma 13. [11] Let M denote the MST of H(V ′, E′) which is a subgraph of graph
G = (V,E). If e ∈ E′ and e /∈M , then e is not in the MST of G.

Next, we give give an Õ(log2 n) round MST algorithm for sparse graphs to show how our
algorithm works on sparse graphs.

I Theorem 14. For any given m, there exists an algorithm to find the minimum spanning
tree of a given graph in Õ(log2 n) rounds of MPC using m machines, such that with high
probability each machine uses a space of size Õ(n/m) and runs an algorithm that is linear in
its input size.

Proof sketch. We first explain the Borůvka’s famous MST algorithm, then show how to
implement it as a distributed algorithm using our framework. Borůvka’s algorithm initially
starts with n components, where each component contains one of the vertices of the graph.
Defining the distance between two components to be the minimum edge between them,
Borůvka’s algorithm in each step merges each component to its closest component simul-
taneously. It could be shown that the size of smallest component is doubled in each step,
hence roughly after O(logn) rounds, all components are merged. The edges through which
we merge these components will be the MST of the input graph.

We call each round of Borůvka a super-round. Then show how each of the super-rounds
could be implemented in Õ(logn) rounds ofMPC. Combining them together, we achieve a
Õ(log2 n) round algorithm for MST.

Let us focus on a super round. Consider a graph that maps each component to a vertex
and contains a directed edge from vertex v to u if the corresponding component of vertex u
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is the closest component to the corresponding component of v. Assuming that no two edges
of the initial graph have the same weight (which could be achieved by simply perturbing all
the edge weights), the structure of this graph would be as follows. Each vertex has exactly
one outgoing edge and the maximum length of a directed cycle is 2. To see this, note that if
there is a cycle of size more than 2, there has to be at least two edges with the same weight.
A cycle of length two indicates two components that are each other’s nearest neighbors. By
contracting cycles of length two, we obtain a collection of trees. In fact, each cycle of length
two becomes the root of a tree. At the end of the super-round, the Borůvka’s algorithm
merges all the components that belong to the same tree together.

The idea is to use our framework to efficiently merge these trees. While merging the
trees, we also have to update the distances between the contracted trees for the next super
round. To do this, in the first step we make sure that all the vertices that belong to the same
tree know each other by assigning the same color (e.g., the id of the root) to them. Note
that the diameter of these trees might be arbitrarily large. Hence we need to incorporate our
framework to handle this in Õ(logn) rounds. After all the vertices are assigned the color of
the tree that they belong to, we find for each tree its minimum edge to other trees. Assume
there are k different trees. Using a (poly log)-expressible bottom-up dynamic program, for
each node of a tree, we keep a list of k − 1 different edges, where each one denotes the
minimum weight edge to another tree. After this list is completely merged, we can contract
the trees and remove the edges that are no longer required.

Each super step takes Õ(logn) rounds. Hence the total running time of the algorithm is
Õ(log2 n). J

C.2 Further Applications of the Splitting Technique
Assume that a set V of vectors in a d-dimensional space is given in the input and a distance
function f : V × V → R+ determines the distances between the input vectors. In the closest
points problem, our goal is to find the pair of vectors that are closest to each other. Moreover,
in the MST in metric spaces, our goal is to find the minimum-weight tree that connects all
these vectors. Our goal is to come up with exact (i.e., not approximate) solutions for these
problems.

Before explaining the actual algorithm, we need to mention that in the literature, with
certain assumptions on the distance function or the dimension, efficientMPC algorithms are
known for finding the MST in metric spaces [6, 47]. However, our goal here is to design a
general algorithm without any assumption on the dimension or the distance function. There
are two ways to consider general distance functions: (1) the value of f for any two vectors is
specified in the input; (2) each machine has access to an oracle that can compute the distance
between any two given vectors. The former case increases the input size quadratically which
simplifies the solution. For instance, finding MST in metric spaces becomes the same as
finding the MST in dense (or in this case, complete) graphs for which efficient constant round
MPC algorithms are known [31, 34, 11]. Our focus, therefore, is on the latter case.

The difficulty with the oracle-based model is that the input size is of size d · |V | and thus
we cannot fit all the vectors in one machine if we want the memory to be sublinear in the
input size. On the other hand, all possible pairs of vectors have to be in the same machine
at some point during the algorithm, or otherwise, we would not be able to determine the
distance between them.

Let n := d · |V | denote the input size. To focus on the general idea, assume at first, that
the number of machines m, is dn2/3e (instead of being given in the input) and that each
machine has space s = Õ(n2/3). We first randomly partition the vectors into k = dn1/3e
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groups {V1, V2, . . . , Vk}. As an application of Chernoff bound, the size of groups is bounded
by Õ(n2/3) with high probability. In the next step, for any i ∈ [k] and j ∈ [k] we put Vi and
Vj in one machine. Note that the number of machines, m = dn2/3e, is more than

(
k
2
)
and

thus we have enough machines to put each group pair in one machine.
To solve the closest points problem, in the second round (after distributing the group

pairs into machines) each machine computes the minimum distance between the points that
are stored in it and all machines send this minimum distance to a single machine µ, then in
the third round, machine µ reports the overall minimum distance. Let us denote by S := s ·m
the overall space on all machines. For the mentioned algorithm, S is n4/3. Also, by setting
k =
√
m, we can get the same guarantee on S as long as m ≤ n2/3. This way, the space of

each machine would be of size Õ(n/
√
m) and therefore the overall space that the algorithm

uses would be of size Õ(n
√
m) = Õ(n4/3).

I Remark. For any given m where m ≤ n2/3, there exists an algorithm to solve the oracle-
based closest points problem in 3 rounds ofMPC using m machines, such that with high
probability, each machine uses a space of size at most Õ(n4/3/m).

But can we get any better bounds on S? Obviously if there are very few machines with
large memories we can improve this bound. However, the goal in distributed settings is to
parallelize the work-load into as many machines as possible. More precisely, for a given
overall space S, we want to able to have as many as m = b

√
Sc machines, each with memory

s ≤ S/m = O(
√
S). (Recall that inMPC we assume m ≤ s, therefore m2 ≤ s ·m = S and

thus m ≤
√
S. Meaning that m = b

√
Sc is the maximum number of machines one can hope

for.) With this natural assumption, we get the following result implying that the n4/3 overall
space is in some sense tight.

I Lemma 15. If m = b
√
Sc, any algorithm in MPC that solves the oracle-based closest

points problem requires at least Ω(n4/3) overall space.

We defer the proof of the following theorem about finding MST in metric spaces to the
forthcoming sections. However, using the “splitting” idea, we can first sparsify the complete
distance graph such that we can randomly distribute its edges in the machines and then
solve the MST problem on a sparse graph.

Theorem 12. (restated) Let V denote a set of vectors in d dimensional space and let
f denote a function that determines the distance between any two vectors u and v where
f(u, v) is computable in O(d) space. Given any m where m ≤ n2/3, there exists an algorithm
to find MST of V in Õ(logn) rounds of MPC using m machines, such that with high
probability, each machine uses a space of size at most Õ(d · n4/3/m).

D Tree Decomposition on MPC

The goal of this section is to give a distributed algorithm to decompose a given tree T with n
vertices into O(m) “components” of size at most Õ(n/m), such that each component has at
most a constant number of “outer edges” to the other components. A very similar problem
called tree contraction has been widely studied in the PRAM setting. There is a series of
works on this problem [40] [1] [24]. There are very nice ideas in these papers. However, due
to the restrictions of the PRAM model, the algorithms presented for tree contraction are very
complicated. In this section we present a much simpler approach for decomposing a tree.

Overview. To motivate the need to design an involved decomposition algorithm, we first
give hints on why trivial approaches do not work. A possible (trivial) algorithm is to choose
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a set of randomly selected joint edges (or vertices) and divide the tree based on them. Note
that the main difficulty is that we need to bound the size of the largest component with a
high probability. It could be shown that this trivial algorithm, even for the simple case of
full binary trees fails. More precisely, it could be shown that the size of the component that
contains the root is of size Ω(n) (instead of Õ(n/m)) with a high probability. In general,
random selection does not perform well in partitioning the tree.

In contrast, our algorithm is as follows. At the very first, we convert the tree into a binary
tree. To do this, we first have to compute the degree of each vertex and then add auxiliary
vertices to the graph. After that, our algorithm proceeds in iterations (not rounds). In each
iteration, we merge the vertices of the tree based on some local rules and after Õ(logn)
iterations, we achieve the desired decomposition. More precisely, in each iteration, we select
a set of vertices based on a set of local rules (e.g., the degree of a vertex, status of its parent,
etc.) and merge each vertex to its closest selected ancestor. We prove in fact these local
rules guarantee that the size of the maximum component is bounded by Õ(n/m) with high
probability.

The input, as mentioned before, is a rooted tree T , with n vertices numbered from 1 to
n (we call these numbers the indexes of the vertices).4 Each machine initially receives a
subset of size Õ(n/m) of the vertices of T where each vertex object v contains the index of
v, denoted by v.index, and the index of its parent, denoted by v.parent.

In Section D.1 we show how universal hash functions allow us to efficiently distribute
and access objects in our model. In Section D.2 we introduce an algorithm to convert the
given tree into a “binary-extension” of it. Finally, in Section D.3 we provide an algorithm to
decompose the binary extension.

D.1 Load Balancing via Universal Hash Families
We start with the definition of universal hash families, that was first proposed by [45].

I Definition 16. A family of hash functions H = {h : A → B} is k-universal if for any
hash function h that is chosen uniformly at random from H and for any k distinct keys
(a1, a2, . . . , ak) ∈ Ak, random variables h(a1), h(a2), . . . , h(ak) are independent and uniformly
distributed in B. A k-universal hash function is a hash function that is chosen uniformly at
random from a k-universal hash family.

The following lemma shows that we can generate a (logm)-universal hash function in
constant rounds and store it on all the machines. Roughly speaking, the idea is to generate
a small set of random coefficients on one machine and share it with all other machines and
then use these coefficients to evaluate the hash function for any given input.

I Lemma 17. For any given k ∈ Z+ where k ≤ poly(n), there exists an algorithm that
runs in O(1) rounds of MPC and generates the same hash function h : [1, k]→M on all
machines where function h is chosen uniformly at random from a (logm)-universal hash
family, and calculating h(.) in a machine takes O(logn) time and space.

We mainly use the universal hash functions to distribute objects into machines. Assuming
that an object a has an integer index denoted by a.index, we store object a in machine
h(a.index) where h is the universal hash function stored on all machines. This also allows
other machines to know in which machine an object with a given index is stored.

4 The assumption that the vertices are numbered from 1 to n is just for the simplicity of presentation.
Our algorithms can be adopted to any arbitrary naming of the vertices.
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We claim even if the objects to be distributed by a (logm)-universal hash function have
different sizes (in terms of the memory that they take to be stored), the maximum load on
a machine will not be too much with high probability. To that end, we give the following
definitions and then formally state the claim.

I Definition 18. A set A = {a1, a2, . . . , ak} is a weighted set if each element ai ∈ A has an
associated non-negative integer weight denoted by w(ai). For any subset B of A, we extend
the notion of w such that w(B) =

∑
a∈B w(a).

I Definition 19. A weighted set A = {a1, a2, . . . , ak} is a distributable set if w(A) is O(n)
and the maximum weight among its elements (i.e., maxai∈A w(ai)) is Õ(n/m).

I Definition 20. We call a hash function h : A →M a distributer if A is a weighted set
andM is the set of all machines. We define the load of h for a machine m to be lh(m) =∑
a∈A:h(a)=m w(a). Moreover we define the maximum load of h to be maxm∈M lh(m).

I Lemma 21. Let h : A→M be a hash function chosen uniformly at random from a (logm)-
universal hash function where A is a distributable set andM is the set of machines (i.e., h is
a distributer). The maximum load of h is Õ(n/m) with probability at least 1− ( 21/δe

δ logn )δ logn

where m ≥ nδ.

The full proof of Lemma 21 is given in the proofs section. The general idea is to first
partition the elements of A into O(n/m) subsets S1, S2, . . . , Sk of size O(m) such that the
elements are grouped based on their weights (i.e., S1 contains the m elements of A with
the lowest weights, S2 contains the m elements in A− S1 with the lowest weights, and so
on). Then we show that the maximum load of the objects in any set Si is Õ(wi) where wi is
the weight of the object in Si with the maximum weight. Finally using the fact that the
objects are grouped based on their weights, we show that

∑
i∈[k] wi, which is the total load

is Õ(n/m).
A technique that we use in multiple parts of the algorithm is to distribute the vertices of

T among the machines using a (logm)-universal hash function.

I Definition 22. Let T be a given tree and let h : {1, . . . , |V (T )|} → M be a mapping of
the vertex indexes of T to the machines. We say T is distributed by h if any vertex v of T is
stored in machine h(v.index).

As a corollary of Lemma 17:

I Corollary 23. One can distribute a tree T by a hash function h that is chosen uniformly
at random from a (logm)-universal hash family in O(1) rounds in such a way that each
machine can evaluate h in O(logn) time and space.

D.2 Conversion of T to a Binary Tree
The first step towards finding a decomposition of T with the desired properties is to convert
it into a binary tree T b that preserves the important characteristics of the original tree (e.g.,
the ancestors of each vertex must remain to be its ancestors in the binary tree too).

The definition of an extension of a tree is as follows. By the end of this section, we prove
it is possible to find a binary extension of T in constant rounds.

I Definition 24. A rooted tree T ′ is an extension of a given rooted tree T if |V (T ′)| =
O(|V (T )|) and there exists a mapping function f : V (T )→ V (T ′) such that for any v ∈ V (T ),
v.index = f(v).index and if u is an ancestor of v in T , f(u) is also an ancestor of f(v) in
T ′.
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The following lemma proves it is possible to find the degree of all vertices in constant
rounds.

I Lemma 25. There exists a randomized algorithm to find the degree of each vertex of a
given rooted tree T in O(1) rounds ofMPC using m machines, such that with high probability,
each machine uses a space of size at most Õ(n/m) and runs an algorithm that is linear in
its memory size.

Proof. The first step is to distribute the vertices of T using a (logm)-universal hash function
h. By Corollary 23 this takes O(1) rounds. Define the local degree of a vertex v on a machine
µ to be the the number of children of v that are stored in µ and denote it by dµ,v. We know
there are at most Õ(n/m) vertices with a non-zero local degree in each machine. Hence in
one round, every machine can calculate and store the local degree of every such vertex. In
the communication phase, every machine µ, for any vertex v such that dµ,v > 0, sends dµ,v
to machine h(v). Then in the next round, for any vertex v, machine h(v) will receive the
local degree of v on all other machines and can calculate its total degree.

We claim with high probability, no machine receives more than Õ(n/m) data after the
communication phase.

Define the weight of a vertex v, denoted by w(v), to be min{m, deg(v)}. The weight of
a vertex v is an upper bound on the size of communication that machine h(v) receives for
vertex v. To see this, observe that a machine sends the local degree of v to h(v) only if
this local degree is non-zero, therefore the total communication size for v cannot exceed its
degree. On the other hand, the total number of machines is m, hence machine h(v) cannot
receive more than m different local degrees for vertex v.

We first prove that V (T ) is a distributable set (Definition 19) based on weight function
w. To see this, note that first, by definition of w, the maximum value that w gets is m,
which indeed is Õ(n/m) (recall that in the model we assumed m is less than the space on
each machine and hence m = Õ(n/m)), and second, the total weight of all vertices is O(n)
since

∑
v∈V (T ) deg(v) = 2n− 2.

By Lemma 21, since V (T ) is a distributable set based on w and since h is chosen from a
(logm)-independent hash family, the maximum load of h, i.e., the maximum communication
size of any machine is Õ(n/m) with high probability. J

We are now ready to give a binary extension of T .

I Lemma 26. There exists a randomized algorithm to convert a given rooted tree T to a
binary tree T b, an extension of T , in O(1) rounds of MPC using m machines, such that
with high probability, each machine uses a memory of size at most Õ(n/m) and runs an
algorithm that is linear in its memory size.

Proof. Our algorithm for converting T to a binary extension of it done in two phases. In
the first phase, we convert T to an extension of it, T d, with a maximum degree of Õ(n/m).
Then in the next phase, we convert T d to a binary extension.

I Claim 27. There exists a randomized algorithm to convert a given rooted tree T to a tree
T d, with maximum degree Õ(n/m) that is an extension of T in O(1) rounds ofMPC such
that with high probability, each machine uses a memory of size at most Õ(n/m) and runs an
algorithm that is linear in its memory size.

The detailed proof of Claim 27 and the pseudo-code to implement it is given in the proofs
section. Intuitively, after calculating the degree of each vertex, we send the index of all
vertices with degree more than O(n/m) to all machines (call them high degree vertices).
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Figure 1 An example of converting a tree to a binary extension of it. The gray nodes denote the
added auxiliary vertices and the numbers within the nodes denote their indexes.

This is possible because there are at most O(m) high degree vertices and m is assumed to be
less than the space of each machine. To any high degree vertex v, in the next step, we add a
set of at most O(n/m) auxiliary children and set the parent of any previous child of v to be
one of these auxiliary vertices that is chosen uniformly at random. The detailed proof of
why no machine violates its memory size during the process and how we assign indexes to
the auxiliary vertices is explained in the proofs section.

The next phase is to convert this bounded degree tree to a binary tree.

I Claim 28. There exists a randomized algorithm to convert a tree T d, with maximum degree
Õ(n/m), to a binary extension of it T b, in O(1) rounds ofMPC using m machines, such
that with high probability, each machine uses a memory of size at most Õ(n/m) and runs an
algorithm that is linear in its memory size.

Again, the detailed proof of Claim 28 and a pseudo-code for implementing it in the desired
setting is given in the proofs section. Roughly speaking, since the degree of each vertex is at
most Õ(n/m), we can store all the children of any vertex in the same machine (the parent
may be stored in another machine). Having all the children of a vertex in the same machine
allows us to add auxiliary vertices and locally reduce the number of children of each vertex
to at most 2. Figure 1 illustrates how we convert the tree to its binary extension, the details
of how exactly the algorithm works is described in the proofs section..

By Claim 27 and Claim 28, for any given tree, there exists an algorithm to construct
a binary extension of it in O(1) round ofMPC, which with high probability uses Õ(n/m)
time and space. J

D.3 Decomposing a Binary Tree
We start with the formal definition of decompositions.

I Definition 29. We define a decomposition of a binary tree T b to be a set of O(m)
components, where each component contains a subset of the vertices of T b that are connected,
and each vertex of T b is in exactly one component. A component ci, in addition to a subset
of V (T b) (which we denote by V (ci)) and their “inner edges", i.e., the edges between the
vertices in V (ci), contains their “outer edges" (i.e., the edges between a vertex in V (ci) and a
vertex in another component) too. The data stored in each component, including the vertices
and their inner and outer edges should be of size up to Õ(n/m).

Since the vertices in any component ci are connected, there is exactly one vertex in
ci that its parent is not in ci, we call this vertex the root vertex of ci and denote it by
ci.root. We also define the index of a component ci to be equal to the index of its root;
i.e., ci.index = ci.root.index (recall that we assume every vertex of T b has a unique index).
Moreover, by contracting a component we mean contracting all of its vertices and only



M.H. Bateni et. al. XX:27

keeping their outer edges to other components. Since the vertices in the same component
have to be connected by definition, the result of contraction will be a rooted tree. We may
use this fact and refer to the components as nodes and even say a component ci is the parent
(child, resp.) of cj if after contraction, ci is indeed the parent (child, resp.) of cj .

I Theorem 30. There exists a randomized algorithm to find a decomposition of a given
binary tree T b with n vertices using m machines, such that with high probability the algorithm
terminates in Õ(logn) rounds ofMPC, and each machine uses a memory of size at most
Õ(n/m) and runs an algorithm that is linear in its memory size.

Algorithm 2 gives a sequential view of the decomposition algorithm we use. We first
prove some properties of the algorithm, and then using these properties, we prove it can
actually be implemented in the desired setting.

Algorithm 2 The sequential algorithm for finding a validMPC decomposition of a given
binary tree T b.
Require: A binary tree T b.
1: C ← ∅ . C will contain all components.
2: for each vertex v in T b do
3: Insert a component containing only v to C.
4: F ← ∅ . F will contain the completed components.
5: while |C| > 14m do
6: S ← ∅ . S will contain the selected components.
7: for each component c ∈ C − F do
8: if c is the root component then
9: Add c to S.
10: else if c has exactly two children components then
11: Add c to S.
12: else if the parent component of c is in F then
13: Add c to S.
14: else if c has exactly one child component then
15: Add c to S with probability 0.5.
16: for each component c ∈ C − F − S do
17: d← Find the closest ancestor of c that is in S.
18: Merge c into d.
19: for every node c in C − F do
20: if c contains at least n/m vertices of T b then
21: Add c to F .

The algorithm starts with n components where each component contains only one vertex
of T b. Then it merges them in several iterations until there are only O(m) components left.
At the end of each iteration, if the size of a component is more than n/m, we mark it as
a completed component and never merge it with any other component. This enables us to
prove that the components’ size does not exceed Õ(n/m). In the merging process, at each
iteration, we “select” some of the components and merge any unselected component to its
closest selected ancestor. We select a component if at least one of the following conditions
hold for it. 1. It is the root component. 2. It has exactly two children. 3. Its parent
component is marked as complete. In addition to these conditions, if a component has
exactly one child, we select it with an independent probability of 0.5. Figure 2 illustrates the
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iterations of Algorithm 2.
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Figure 2 An example of running Algorithm 2. Each node denotes a component. A gray node
denotes a selected component and a black node denotes a completed component.

The intuition behind the selecting conditions is as follows. The first condition ensures
every unselected component has at least one selected ancestor to be merged to. The second
condition ensures no component will have more than two children after the merging step.
(To see this, let c1 be a component with two children, c2 and c3. Also let c3 have two
children, c4 and c5. If only c3 is not selected and is merged to c1, then the resulting
component will have three children c2, c4 and c5.) The third condition ensures the path of a
component to its closest selected ancestor does not contain any completed component. This
condition is important to keep the components connected. Finally, randomly selecting some
of the components with exactly one child ensures the size of no component exceeds Õ(n/m).
(Otherwise, a long chain of components may be merged to one component in one iteration.)
We also prove at most a constant fraction of the components are selected at each iteration.
This proves the total number of iterations, which directly impacts the number of rounds in
the parallel implementation, is logarithmic in the number of vertices.

D.3.1 Properties of Algorithm 2
In this section, we prove some properties of Algorithm 2. These properties will be useful in
designing and analyzing the parallel implementation of the algorithm.

Many of these properties are defined on the iterations of the while loop at line 5 of
Algorithm 2. Any time we say an iteration of Algorithm 2, we refer to an iteration of this
while loop. We start with the following definition.

I Definition 31. We denote the total number of iterations of of Algorithm 2 by I. Moreover,
for any i ∈ [I], we use Ci and Fi to respectively denote the value of variables C (which
contains all components) and F (which contains the completed components) at the start
of the i-th iteration. Analogously, we use Si to denote the selected components (S) at the
end of the i-th iteration. We also define Ti to be the rooted component tree that is given by
contracting all components in Ci (e.g., T1 = T b).

I Claim 32. For any i ∈ [I−1], each component c ∈ Ci+1 is obtained by merging a connected
subset of the components in Ci.

Proof. Observe that if in a step a component v is the closest selected ancestor of component
u, it is also the closest selected ancestor of every other component in the path from u to v
(denote the set of these components by Pu). We claim if u is merged to v, every component
in Pu will also be merged to v in the same step. To see this, note that if there exists a
component in Pu that is in Fi or Si, the closest selected ancestor of u would not be v. Hence
all of these components will be merged to v and the resulting component will be obtained by
merging a connected subset of the components in Ci. J
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The following is a rather general fact that is useful in proving some of the properties of
Algorithm 2.

I Fact 33. For a given binary tree T , let ki(T ) denote the number of vertices of T with
exactly i children. Then k0(T ) = k2(T ) + 1.

We claim the components’ tree, in all iterations of the while loop, is a binary tree.

I Claim 34. For any i ∈ [I], the component tree Ti is a binary tree.

Proof. We use induction to prove this property. We know by Definition 31, that T1 = T b
and since T b is a binary tree, the condition holds for the base case T1.

Assuming that Ti−1 is a binary tree, we prove Ti is also a binary tree. Fix any arbitrary
component c in Ci, we prove it cannot have more than two children. Let U = {c1, . . . , ck} be
the components in Ci−1 that were merged with each other to create c. For any component
cj ∈ U let childU (cj) denote the number of children of cj that are in U and let child(cj)
denote the total number of children of cj (no matter if they are in U or not). For any child
of c, there is a component in U with a child that is outside of U , therefore to prove c cannot
have more than two children it suffices to prove∑

cj∈U

(
child(cj)− childU (cj)

)
≤ 2. (1)

We first prove
∑
cj∈U child(cj) ≤ |U |+ 1. Note that at most one of the components in

U has two children in Ti−1 since all vertices with two children are selected in line 11 of
Algorithm 2 and if two components are merged at least one of them is not selected (line 16
of Algorithm 2). Therefore other than one vertex in U which might have two children in
Ci−1, others have at most one children. Hence

∑
cj∈U child(cj) ≤ |U |+ 1.

Next, we prove
∑
cj∈U childU (cj) ≥ |U | − 1. We know by Claim 32 that the components

in U are connected to each other. Therefore there must be at least |U | − 1 edges within them
and each such edge indicates a parent-child relation in U . Hence

∑
cj∈U childU (cj) ≥ |U | − 1.

Combining
∑
cj∈U child(cj) ≤ |U |+1 and

∑
cj∈U childU (cj) ≥ |U |−1 we obtain Equation 1

always holds and therefore Ti is a binary tree. J

The following property bounds the number of unselected ancestors of a component that
is going to be merged to its closest selected ancestor.

I Claim 35. With probability at least 1 − 1/n, for any given i and ci, where i ∈ [I] and
ci ∈ Ci − Fi − Si, there are at most 2 logn components in the path from ci to its closest
selected ancestor.

Proof. We first show with probability 1− 1/n2, there are at most 2 logn components in the
path from c to its closest selected ancestor. To see this, let Pc denote the set of ancestors
of c that have distance at most 2 logn to c. We prove with probability 1 − 1/n2 at least
one component in Pc is selected. Since, all the children of any component in Fi is in Si, If
Pc ∩ Fi 6= ∅, then Pc ∩ Si 6= ∅. Otherwise, any component in Pc is selected independently
with probability at least 1

2 and the probability that Pc ∩ Si 6= ∅ is 1− 2−2 logn = 1− 1/n2.
In addition we prove that Σi∈[I]|Ci − Fi − Si| ≤ n, so that we can use union bound over

all the components in ∪i∈[I]Ci − Fi − Si. To prove this it suffices to prove that any vertex
v ∈ V (T ) is at most the root vertex of one of the components in ∪i∈[I]Ci−Fi−Si. To prove
this, let j denote the first iteration that v is the root vertex of a component in Cj − Fj − Sj .
In this iteration we merge this component with one of its ancestors, so it can not be root
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vertex of any other component in ∪i∈[I],i>jCi − Fi − Si. Therefore using union bound over
all the components in ∪i∈[I]Ci −Fi − Si, we obtain that with probability at least 1− 1/n for
any given i and ci, where i ∈ [I] and ci ∈ Ci − Fi − Si, there are at most 2 logn components
in the path from ci to its closest selected ancestor. J

The following property implies that w.h.p. at each round at most a constant fraction of
the incomplete components are selected.

I Claim 36. There exists a constant number 0 < c < 1 such that for any i ∈ [K], with
probability at least 1− e−n/24, |Si| ≤ c · |Ci − Fi|.

Proof. Let Kj(Ci) denote the set of components in Ci with exactly j children. Since each
component in K1(Ci) is selected independently with probability 1

2 , by Chernoff bound, in
round i,

Pr[|K1(Ci) ∩ Si| >
3
4 |K1(Ci)|] ≤ e−n/24.

The components that are selected in each round are as follows. With probability at
least 1 − e−n/24 we choose less than three forths of the components in K1(Ci), the root
component, all the components in Kj(Ci), and at most two components for any component
in Fi. Therefore, with probability at least 1− e−n/24,

|Si| < 1 + |K2(Ci)|+
3
4 |K1(Ci)|+ 2|Fi|. (2)

By Fact 33, |K0(Ci)|= |K2(Ci)| + 1, and by Lemma 34, Ti is a binary tree, so Ci =
K0(Ci) +K1(Ci) +K2(Ci). Therefore,

1 + |K2(Ci)|+
3
4 |K1(Ci)| <

1
2(|K2(Ci)|+ |K0(Ci)|+ 1) + 3

4 |K1(Ci)| ≤
3
4 |Ci|. (3)

By equations 2 and 3 with probability at least 1− e−n/24, |Si| ≤ 3
4 |Ci|+ 2|Fi|. Therefore to

complete the proof, it suffices to prove that there exists a constant number 0 < c < 1 such
that equation

3
4 |Ci|+ 2|Fi| ≤ c · |Ci − Fi|,

which is equivalent to
2− c
c− 3/4 ≤

|Ci|
|Fi|

holds. Since the size of any component in Fi is at least n/m, |Fi| ≤ m. In addition, by line 3
of Algorithm 2, |Ci| > 14m, therefore |Ci||Fi| ≥ 14. It is easy to see that the equation

2− c
c− 3/4 ≤ 14 ≤ |Ci|

|Fi|

holds for c = 5/6, which is a constant number in (0, 1). J

The following property is a direct corollary of Claim 36.

I Corollary 37. With high probability the while loop at line 5 of Algorithm 2, has at most
O(logn) iterations.

We are now ready to prove each component has at most Õ(n/m) vertices.

I Claim 38. The size of each components at any iteration of Algorithm 2 is bounded by
Õ(n/m) with high probability.
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1 2 3 4

Figure 3 Intuition behind finding the closest selected ancestor in O(log logn) rounds. The
details are explained in the text.

Proof. By Claim 32 any component ci ∈ Ci is obtained by merging a connected subset of the
components in Ci−1. Let Xi ⊂ Ci−1 denote this subset, and let T (Xi) denote the component
tree given by contracting all components in Xi. We first prove that |Xi| = O(logn).

By Claim 34, T (Xi) is a binary tree, and by line 16 of Algorithm 2 Xi − T (Xi).root ⊂
Ci−1 − Fi−1 − Si−1. Note that, any component in Ci−1 − Fi−1 − Si−1 has at most 1 other
component as a child, and T (Xi).root has at most 2 children. In addition, by Claim 35,
with high probability for any c ∈ Xi − T (Xi).root the distance between c and T (Xi).root is
2 logn. Therefore, with high probability |Xi| ≤ 4 logn+ 1, which is O(logn).

In addition, note that Xi ⊂ Ci−1 − Fi−1, and any component in Ci−1 − Fi−1 has size at
most O(n/m), hence with high probability |ci| = Σc∈Xi |c| = Õ(n/m). J

D.3.2 Parallel Implementation of Algorithm 2
Algorithm 2 is a sequential implementation of our decomposition algorithm. To implement
it in the desired model, each iteration of the while loop at line 5 of Algorithm 2 will be
completed in several rounds. In fact, we show that with high probability each iteration can
be completed in O(log logn) rounds and that there are at most O(logn) iterations. This
means the algorithm will be completed in O(logn log logn) rounds with high probability.

The sets Ci, Fi and Si (Definition 31) may have up to O(n) elements. This indicates
that they cannot be stored in one machine and we have to distribute them among different
machines. To that end, we use Cµi , F

µ
i , and S

µ
i to respectively denote the subsets of Ci, Fi

and Si that are stored in machine µ in the i-th iteration (recall that each iteration is not
mapped to exactly one round and may contain several rounds).

In the first round, as analogous to lines 1-4 of Algorithm 2, each machine µ for any
vertex v that is stored in it, creates a component that only contains v and stores it in Cµ1 .
Clearly ∪µ∈MCµ1 = C1. Line 5 of Algorithm 2 however, requires to know the total number
of components in all machines. To access this, each machine at the end of each iteration,
shares the number components that it contains with all other machines.

Lines 6-15 of Algorithm 2, where some components are selected and added to S, can
be locally implemented on each machine and over only the components that are stored in
it. The only issue is that in line 12, we need to know whether the parent of a component,
which may not be in the same machine, is a completed component or not. To handle this,
we already know by Claim 34 that each component will be the parent of at most two other
components at any iteration. Hence for any component, at the end of each iteration, we
can notify the machines that contain its children whether it is marked as completed or not
without violating the communication size limit.

In lines 16-18 of Algorithm 2, each component is merged to its closest selected ancestor
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(CSA). This step requires several rounds in the parallel setting since the ancestors of a
component may be stored in other machines. Let d denote the maximum distance of a
component to its CSA. By iteratively querying the ancestors of the components we can
find the CSA of all components in O(d) rounds. This algorithm can be improved to work
in O(log d) rounds. Consequently, since by Claim 35 we know with high probability that
d = O(logn), it takes at most O(log logn) rounds to find the CSA of all components.

At each round, for any component c, we use F (c) to point to the furthest ancestor of c to
which we have searched for a selected component. (Figure 3 illustrates how the algorithm
updates F (.); each component in Figure 3 is shown by a node and a directed edge from node x
to node y indicates F (x) points to y.) We initially set F (c) to be c.parent for any component
c (column 1 in Figure 3). In each round, each machine for any component c that is stored in
it, sends a query to the machine containing the component c′ where c′.index=F (c) and in
the next round receives a response containing F (c′); then updates F (c) to be F (c′). If at any
time, F (c) points to a selected component, that is the CSA of component c and we do not
update F (c) anymore. (The white nodes in Figure 3 show the components that the algorithm
has found their CSA.) The distance of any component c to its furthest explored ancestor
F (c) is exponentially increasing at each round until it points to a selected component and
hence it takes O(log d) rounds to find the closest selected ancestors of all components.

After finding the CSA of all components, we move any component that is not selected or
finished to the machine that contains its CSA. Then in the next round, all components that
have to be merged together will be in the same machine and can be merged.

Lines 19-21 of Algorithm 2 can be locally done on each machine and only over the
components that are stored in it.

More details of the parallel implementation, and hence, the formal proof of Theorem 30
is left to the appendix.

E Omitted Proofs

Proof of Lemma 2

Proof. The main idea of the algorithm is to first partition T into two sub-trees T 1 and T 2
such that each of them has at most 2nT

3 vertices. Unfortunately, in case all inherited border
vertices of T lie within one of the sub-trees, we may end up having 4 border vertices in one
of the sub-trees since the partitioning step creates one new border vertex in each of the
sub-trees. To handle this case, we again partition the sub-tree with 4 border vertices into
two sub-trees such that they will not have more than 3 border vertices at the end.

Let D[v] denote the number of descendants of vertex v (including itself), and let B[v]
denote the number of border vertices among these descendants. It is easy to see that there
exists linear time bottom-up dynamic algorithms to calculate these two vectors.

In the first step, we use Algorithm 3 to find an edge and claim removing it partitions T
into two sub-trees T 1 and T 2, where max(|V (T 1)|, |V (T 2)|) ≤ 2nT

3 .
To prove the returned edge e = (v, u) is a desired one, it suffices to prove nT

3 ≤ D[u] ≤ 2nT
3

since this yields that the size of the other partition is also less than or equal to 2nT
3 . The

condition at Line 7 of Algorithm 3 ensures: (i) D[u] ≤ 2nT
3 , and (ii) D[v] > 2nT

3 . The former
inequality is a direct result of the condition; the latter also holds since otherwise v (the parent
of u) would not have been updated. Using the second inequality and since u = CD[v] (i.e.,
the child of v with maximum number of descendants) we can obtain D[u] ≥ D[v]−1

2 ≥ nT
3 as

desired.
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Algorithm 3
1: procedure FirstCut(T )
2: D ← Descendants(T )
3: for any vertex v of T do
4: CD[v]← the child u of v with maximum D[u]
5: nT ← D[T .root]
6: v ← T .root
7: while D[CD[v]] > 2nT

3 do
8: v ← CD[v]
9: return edge (v, CD[v])

After partitioning T we may end up having one partition with more than 3 border vertices
(exactly 4) since removing an edge can add up to one new border vertex to each partition. In
this case, let T 1 denote the sub-tree with 4 border vertices. We run Algorithm 4 to partition
T 1 into two sub-trees with less than 4 border-vertices. J

Algorithm 4
1: procedure SecondCut(T )
2: B ← BorderVertices(T )
3: for any vertex v of T do
4: CB [v]← the child u of v with maximum B[u]
5: v ← T .root
6: while B[CB [v]] > 2 do
7: v ← CB [v]
8: return edge(v, CB [v])

Proof of Lemma 17
Proof. We use the following proposition by [44].

I Proposition 39 (Corollary 3.34 in [44]). For any d, p, k ∈ Z+, there is a family of k-wise
independent hash functions H = {h : [d]→ {0, 1, . . . , 2p−1}}, from which choosing a random
function h takes k ·max{log d, p} random bits, and evaluating any function h ∈ H takes time
poly(log d, p, k).

Recall that we assume the number of machines, m, is a power of two in the model.
Therefore we can use Proposition 39 to choose the hash function h : [k] → M with only
max {log k, logm} random bits which we can generate on one machine and share with all
other machines. The total communication of this machine would be O(m(log k + logm))
which is Õ(n/m) since m = O(

√
n) and k is poly(n). J

Proof of Lemma 21
To prove Lemma 21 we use a known result on the balls and bins problem by [42]. We start
with the definition of the balls and bins problem.

I Definition 40 (Balls and bins). In an instance of balls and bins problem there are n balls
and n bins. Each ball is placed into one of the bins that is chosen uniformly at random. Let
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random variable Xi with range {1, .., n} denote the bin that the i-th ball is assigned to. In
this problem, the load of an arbitrary bin b ∈ [n] is the number of balls assigned to this bin,
which is equal to Σni=1Xi = b.

The following claim is based on the result of [42].

I Claim 41. Let li denote load of the i-th bin in an instance of balls and bins problem in which
random variables X1, . . . , Xn are (logn)-wise independent, then Pr [maxni li > 2 logn] ≤
( 2e

logn )logn.

Proof. By Theorem 6-(V) in [42] we infer that, given an instance of balls and bins problem
in which random variables X1, . . . , Xn are (logn)-wise independent, for any r and η such
that r ≥ 1 + η + logn, and k ≥ η The following equation holds:

Pr [li > r] ≤ eη

(1 + η)1+η

.
Using this result, by setting η = logn− 1 and r = 2 logn in the mentioned instance of

balls and bins problem, for any i ∈ [n], Pr [li > 2 logn] ≤ ( e
logn )logn. Given this fact, by

taking union bound over all n bins we achieve the following result:

Pr [ nmax
i
li > 2 logn] ≤ n · Pr [li > 2 logn] = 2logn · ( e

logn )logn = ( 2e
logn )logn. J

We are now ready to prove Lemma 21.

Proof of Lemma 21. Our starting point is Lemma 41. We represent the elements of A as
balls and the machines as bins. However, there are two main problems. First, |A| may be
much larger than the number of machines (m), while Lemma 41 expects the number of balls
to be equal to the number of bins. Second, the balls are unweighted in Lemma 41 whereas
the elements of A are weighted.

To resolve the above issues, we first partition the elements of A into dn/me (= α) subsets
S1, S2, . . . , Sα of size m (except the last subset Sα which might have fewer elements if n/m
is not an integer) such that the elements are grouped based on their weights. More precisely,
S1 contains the m elements of A with the lowest weights, S2 contains the m elements in
A− S1 with the lowest weights, and so on.

I Claim 42. For m = nδ, with probability at least 1− ( 21/δe
δ logn )δ logn there is no set Si where

h maps more than O(logm) elements of Si to the same machine.

Proof. Since h is chosen from a (logm)-universal hash function, and since each Si has at
most m elements, the machines that the elements in Si are assigned to are (logm)-wise
independent. Therefore, by fixing a set Si, we can use Lemma 41 to prove at most O(logm)
elements of Si are assigned to the same machine with probability 1− (2e/ logm)logm. By
taking union bound over the failure probability of all sets we obtain that with probability at
least

1− n

m
∗ ( 2e
logm

)logm = 1− n( e

logm )logm = 1− ( 21/δe

δ logn )δ logn

there is no set Si where h maps more than O(logm) elements of Si to the same machine. J

Let wi = maxa∈Si w(a) denote the weight of the element in Si with the maximum
weight. Also let lih(µ) denote the load of h on machine µ from the elements in set Si (i.e.,
lih(µ) =

∑
a∈Si:h(a)=µ w(a)). By Claim 42, with high probability, from any set Si, at most
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O(logm) elements are mapped to the same machine. Also since the maximum weight of the
elements in Si is wi we know with high probability that lih(µ) ≤ O(logm · wi) for any i. We
know by Definition 20 that lh(µ) =

∑α
i=1 l

i
h(µ), therefore

lh(µ) = l1h(µ) + . . .+ lαh (µ) ≤ O(logm · (w1 + . . . wα)). (4)

Therefore the maximum load of h is Õ(w1 + w2 + . . .+ wα). To complete our proof, it
suffices to prove w1 + w2 + . . .+ wα = O(n/m). To see this, note that w(a) ≥ wi−1 for any
a in Si or otherwise a would have been in Si−1 instead of Si. Therefore,∑

a∈Si

w(a) ≥ |Si| · wi−1 = m · wi−1 ∀i : 1 ≤ i < α, (5)

which means,

m(w1 + w2 + . . .+ wα−1) ≤
α∑
i=2

∑
a∈Si

w(a). (6)

On the other hand since the total weight of the elements in A is O(n) by Definition 19, we
obtain

m(w1 + w2 + . . .+ wα−1) ≤ O(n), (7)

and therefore
∑α−1
i=1 wi ≤ O(n/m). Finally since by Definition 19 we know the maximum

weight in A, and consequently wα is not more than n/m, we prove
∑α
i=1 wi ≤ O(n/m) as

desired. J

Proof of Claim 27
Proof. Algorithm 5 is the implementation of such an algorithm inMPC. Before running
this algorithm, we distribute all the vertices in V (T ) overM machines independently and
uniformly at random. To construct T d we first add |V (T )| vertices to it with the same set
of indexes as the vertices in V (T ). These vertices do not have any parent yet, so we assign
parents to them later in the algorithm. We will also add some auxiliary vertices to this tree.

Set ∆ to be d nme. For any vertex v ∈ T , let Cv denote the set of children of v in tree
T , and let vd denote the vertex equivalent to v in T d, which has the same index as v.
If ∆ ≥ |Cv| for any vertex u ∈ Cv, we set the parent of vertex ud as vd. Otherwise, if
∆ < |Cv|, we add a set of |Cv|∆ auxiliary vertices to V (T d), denoted by Av, such that vd is
the parent of all the vertices in Av, and for any vertex u ∈ Cv, we choose one of the auxiliary
vertices in Av independently and uniformly at random as the parent of the vertex ud. This
guarantees that, for any two vertex u and v that v is an ancestor of u in T , vd is also an
ancestor of ud. In addition |V (T d)| = O(|V (T )|), so T d is an extension of T . Note that
|Cv|
∆ ≤ m ≤ O(n/m) = O(∆ logn) , therefore for any vertex v of T , the degree of vd is at

most O(∆ logn). Moreover, for any two vertices u and v such that |Cv| > ∆ and u ∈ Av, it
is easy to see that by Claim 41 with high probability the maximum number of vertices from
Cv that choose u as the parent for their equivalent vertex in T d, is at most O(∆ logn) since
any vertex in Cv choses a vertex in Av independently and uniformly at random. Therefore,
the maximum degree in T d is O(∆ logn).

To implement this algorithm in MPC, each machine in M needs to have the list of
all the vertices in T with degree more than ∆ alongside with the number of children each
one’s equivalent vertex will have in tree T d . Let Kµ denote the set of such vertices of
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T in any machine µ ∈ M, and let Sµ be a dictionary with the set of keys Kµ, such that
Sµ(v) is the number of children that vertex vd will have in tree T d for any vertex v ∈ Kµ.
We assume that each machine has the degree of all the vertices that are stored in it. By
Lemma 25 we can achieve this in O(1) rounds ofMPC. In the first round of the algorithm
each machine constructs and sends this dictionary to all machines. In the next round, each
machine construct a dictionary S which is the union of all the dictionaries received in round
1, and its own dictionary. (Since the dictionaries have distinct set of keys the union of them
is well-defined.) For any vertex v ∈ V (T ) we construct vd in the same machine as v, and
using S, we set its parent. In addition, if the degree of v in tree T is more than ∆, we add
S(v)

∆ auxiliary vertices as the children of vd in this machine. It is easy to see that the data in
dictionary S, suffices to assign a unique index to any auxiliary vertex. After this algorithm
terminates each vertex of V (T d) is stored in exactly one machine.

To prove that during the algorithm, with high probability no machine violates the memory
limit of Õ(n/m), it suffices to prove that with high probability the number of vertices with
degree greater than ∆ in any machine µ ∈ M is O(logn), since it yields that the size of
the message each machine sends in round 1 of the algorithm is O(logn), and hence we have
Õ(m) ≤ Õ(n/m), the overall message passing for each machine does not violate the memory
limit. Moreover, it indicates that the total number of vertices added to each machine is at
most O(logn) · n∆ ≤ Õ(n/m). To prove this claim, we use two facts. First, before running
the algorithm we uniformly distribute the vertices over all the machines, and second, the
total number of the vertices with degree at least ∆ in a tree is at most O( n∆ ) ≤ O(m). So,
by Claim 41 with high probability there are at most O(logn) vertices with degree at least ∆
in any machine µ ∈M. J

Proof of Claim 28
Proof. Algorithm 6 is the implementation of an algorithm to convert T d to T b inMPC. To
construct T b we first add |V (T d)| vertices to it with the same set of indexes as the vertices
in V (T d). These vertices do not have any parent yet, so we assign parents to them later in
the algorithm. We will also add some auxiliary vertices to this tree. Let Cv denote the set of
children of vertex v, for any v ∈ V (T d), and let vb denote its equivalent vertex in T b . The
overall idea in this algorithm is as follows: for any vertex with more than two children we
construct a binary tree tv with root vb such that for any u ∈ Cv, ub is a leave in this tree,
and |V (tv)| = 2|Cv| − 1. Then we add the vertices of tv excluding the root to binary tree T b
with the same parent they have in tv. In addition, for any v with less than 3 children we set
the parent of its children’s equivalent vertices in T b as vb.

To implement this algorithm inMPC, we need to have all the children of any vertex in
one machine. To achieve this, we first distribute all the vertices in V (T d) over m machines
using a hash function h : [|V (T b)|]→ [m] which is chosen uniformly at random from a family
of logn-universal hash functions. By Corollary 23 it is possible to distribute V (T d) by hash
function h in O(1) round ofMPC , and using O(logm) time and space on each machine in
such a way that each machine can evaluate h in O(logm) time and space. Let Vµ denote the
set of vertices that is assigned to an arbitrary machine µ by this distribution. For any vertex
v ∈ Vµ let pv denote v’s parent, and let µv be the machine that pv ∈ Vµv . Since evaluating h
in each machine takes O(logm) time and space, It is possible to find µv for all v ∈ Vµ using
Õ(n/m) time and space in machine µ. We send any vertex v as a message to the machine µv.
In this way all the children of any vertex are sent to the same machine. In addition since
|Cv| ≤ Õ(n/m), by Lemma 21 with high probability the total size of the messages received
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Algorithm 5 An algorithm to convert a given tree T to a bounded degree tree T d, an
extension of T
Require: given a number ∆ this algorithm converts a tree T whose vertices are distributed

over m machines to an extension of it, T d with maximum degree O(∆ logn)
1: Let µ denote the machine in which this instance of algorithm is running, and let Vµ

denote the set of vertices of T that are stored in this machine.
2: round 1:
3: Let Sµ be a dictionary with the set of keys Kµ = {v.index| deg(v) > ∆, v ∈ Vµ}.
4: For any v, such that v.index ∈ Kµ, Sµ(v.index) = d | deg(v)|

∆ e.
5: Send Sµ and Kµ to all the other machines.
6: end
7: round 2:
8: K ← ∪i∈MKi

9: S ← ∪i∈MSi . Since Kis are distinct, for any i ∈ K S[i] has exactly one value
10: Let D be a dictionary on the same set of keys as S, while for any i ∈ K, D[i] =

n+ Σj∈S,j<iS[j].
11: for every v in Vµ do
12: if v.parent ∈ K then
13: Choose x uniformly at random from [S(v.index)].
14: v.parent← D[v.parent] + x . D[v.parent] + x is a unique index in the

range [n, 2n] assigned to the x-th child of vertex v in T d

15: for every v in Kµ do
16: for every j in [S[v]] do
17: Add Vertex(v,D[v] + j) to Vµ .
18: end

by any machine µ which is equal to ΣvinVµ |Cv| is Õ(n/m).

For any vertex v ∈ V (T d) where |Cv| > 2, we add some auxiliary vertices to T b, which
does not have any equivalent vertex in V (T d), so we need to assign an index to them. To
make sure that these assigned indexes are unique, any machine µ computes the number of
all the auxiliary vertices generated in this machine, which is equal toΣv∈Vµ max(|Cv| − 2, 0),
and send it to all the other machines with index greater than µ.index. It is easy to see that
using this received data each machine is able to generate unique indexes for any auxiliary
vertex in it. Figure 1 represents how this algorithm works. The gray vertices in this figure
are the auxiliary vertices added to the tree. J
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Algorithm 6 An algorithm to convert a given bounded degree tree T d to a binary extension
of it, T d

Require: In the beginning of the algorithm vertices of the tree T d with maximum degree
O(∆ logn) are distributed over m machines using a hash function h. This algorithm
converts T d to a binary tree T b, which is an extension of T d.

1: Let µ denote the machine in which this instance of algorithm is running, and let Vµ
denote the set of vertices of T d that are stored in this machine.

2: round 1:
3: for every v in Vm do
4: µd = h(v.parent)
5: Send (v.parent, v) to machine µd. . Send it even if µd = µ.
6: Delete v from Vµ.
7: end
8: round 2:
9: Let R denote the set of all the messages received in the previous round.
10: Cv ← {u|(v, u) ∈ R} . Cv is the set of all the children of vertex v
11: Send Σv∈Vµ max(|Cv| − 2, 0) to any machine µ′ such that µ′.index > µ.index.
12: end
13: round 3:
14: Let s denote the summation of all the messages received in the previous round.
15: d← s+ 1
16: for every v in Vµ do
17: Construct a binary tree bv with root v, leaves Cv, and |Cv| − 2 inner vertices

indexed by d, . . . , d+ |Cv| − 2. . Any vertex in a tree that is not a root, nor a leave is
considered as an inner vertex. If |Cv| ≤ 2 there is no inner vertex.

18: d← d+ max(0, |Cv| − 2)
19: for every vertex u in bv excluding v do
20: Let u.par denote the index of u’s parent in the tree bv.
21: Add Vertex(u.par, u.index) to Vm.
22: end
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Algorithm 7 This algorithm runs on any machine µ inMPC to decompose a binary tree
T b

Require: A binary tree T b.
1: Before this algorithm begins, we distribute vertices of T b using a hash function h choosing

uniformly from a family of logn-universal hash functions.
2: round 1:
3: Cµ ← ∅ . Cµ will contain all components in machine µ.
4: for each vertex v in T b do
5: Insert a component containing only v to Cµ.
6: Fµ ← ∅ . Fµ will contain the completed components in machine µ.
7: F ← ∅ . F will contain the index of all the completed components in all the machines
8: end
9: repeat
10: begin round
11: Sµ ← ∅ . Sµ will contain the selected components in machine µ.
12: for each component c ∈ Cµ − Fµ do
13: if c is the root component then
14: Add c to Sµ.
15: else if c has exactly two children components then
16: Add c to Sµ.
17: else if the index of the parent component of c is in F then
18: Add c to Sµ.
19: else if c has exactly one child component then
20: Add c to Sµ with probability 0.5.
21: end round
22: FCSA(Cµi , F

µ
i , S

µ
i )

23: begin round
24: for every c in Cµi − F

µ
i − S

µ
i do

25: Send message (c, F (c)) to the machine containing F (c).
26: delete c from Cµi .
27: end round
28: begin round
29: for every node c in Cµ − Fµ do
30: For any message (c′, c) received in the previous round, merge component c′

with c.
31: if c contains at least n/m vertices of T b then
32: Add c to Fµ.
33: Add c.index to F .
34: Send message (c.index) to all the other machines.
35: end round
36: begin round
37: for every component c that c.index received in the previous round do
38: Add c.index to F .
39: end round
40: until

∑
i∈M |Ci| > 14m
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E.1 Parallel Implementation of The Decomposition

Algorithm 8 Finding the closest selected ancestor of all components in machine µ.
Require: During the process of finding closest selected ancestor, all the machines run this

algorithm. For any component c that is not selected or completed at the end of this
algorithm it has access to the index of its closest selected ancestor, denoted by F (c).

1: procedure FCSA(Cµi , F
µ
i , S

µ
i )

2: begin round
3: for any c ∈ Cµ − Fµ − Sµ do
4: F (c)← c.parent

5: end round
6: while we receive requests or want to send requests do
7: begin round
8: Let Qµ and Rµ respectively denote the set of queries and responses that are

sent to machine µ.
9: for each response {q : r} ∈ Rµ do
10: F (c)← r where c is the component in machine µ for which F (c) = q.
11: for each component c ∈ Cµ − Fµ − Sµ do
12: if F (c) is not selected then
13: Send query F (c) to the machine containing component with index F (c).
14: for each query q ∈ Qµ do
15: Send response F (q) to the machine containing component with index q
16: end round

Proof of Theorem 30. Algorithm 7 is the implementation of Algorithm 2 in MPC. by
Definition 29 a decomposition of a binary tree T b is a set C of components with some properties
that we mention each of them and prove that the decomposition given by Algorithm7 satisfies
them. Let C = ∪µ∈MCµ where for any machine µ, Cµ is the components stored in machine
µ when this algorithm terminates.
1. |C| = O(m): by line 40 in Algorithm 7, the number of components when the algorithm

terminates is less than 14m = O(m).
2. Each component contains a subset of the vertices of T b that are connected: by Claim 32

the decomposition given by Algorithm 7 satisfies this property.
3. Each vertex of T b is in exactly one component: it is easy to see that Algorithm 7 satisfies

this property.
4. The data stored in each component is of size up to Õ(n/m): by Claim 38, the size of

each component is at most Õ(n/m). Moreover by Claim 34 the component tree is always
a binary tree. Therefore the data stored for each component which includes its vertices
and the index of adjacent components in component tree is Õ(n/m).

By Corollary 37, with high probability this algorithm terminates in Õ(logn) rounds ofMPC.
We also prove that during this algorithm no machine uses memory more than Õ(n/m). At
the beginning of Algorithm 7, we distribute vertices of T b using a hash function h choosing
uniformly at random from a family of logn-universal hash functions. Let Ri ∈ V (T b) denotes
the root vertices of the components in ∪µ∈MCµi in i-th iteration of the algorithm. In addition,
for any µ ∈ M, let Rµi denote the set of vertices in Ri that is assigned to machine µ by
hash function h at the beginning of algorithm. At the end of any iteration i, the component
with root r ∈ Rµi is in machine µ. By claim 38, the size of each component is at most
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Õ(n/m). Moreover the total size of the components is O(n). Therefore by Lemma 21, with
high probability the maximum load at the end of each iteration on any machine is at most
Õ(n/m). We are allowed to use this Lemma here since the decomposition is each iteration
is independent from the distribution of vertices at the beginning of the algorithm. To sum
up, this implies that there exists a randomized algorithm to find a decomposition of a given
binary tree T b such that with high probability the algorithm terminates in Õ(logn) rounds
ofMPC, and each machine uses a memory of size at most Õ(n/m) and runs an algorithm
that is linear in its memory size. J
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