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Abstract

The knapsack problem is a fundamental problem in combinatorial optimization. It has been
studied extensively from theoretical as well as practical perspectives as it is one of the most
well-known NP-hard problems. The goal is to pack a knapsack of size t with the maximum
value from a collection of n items with given sizes and values.

Recent evidence suggests that a classicO(nt) dynamic-programming solution for the knapsack
problem might be the fastest in the worst case. In fact, solving the knapsack problem was
shown to be computationally equivalent to the (min,+) convolution problem, which is thought
to be facing a quadratic-time barrier. This hardness is in contrast to the more famous (+, ·)
convolution (generally known as polynomial multiplication), that has an O(n log n)-time solution
via Fast Fourier Transform.

Our main results are algorithms with near-linear running times (in terms of the size of the
knapsack and the number of items) for the knapsack problem, if either the values or sizes of items
are small integers. More specifically, if item sizes are integers bounded by smax, the running time
of our algorithm is Õ((n+t)smax). If the item values are integers bounded by vmax, our algorithm
runs in time Õ(n + tvmax). Best previously known running times were O(nt), O(n2smax) and
O(nsmaxvmax) (Pisinger, J. of Alg., 1999).

At the core of our algorithms lies the prediction technique: Roughly speaking, this new
technique enables us to compute the convolution of two vectors in time Õ(nemax) when an
approximation of the solution within an additive error of emax is available.

Our results also improve the best known strongly polynomial time solutions for knapsack.
In the limited size setting, when the items have multiplicities, the fastest strongly polynomial
time algorithms for knapsack run in time O(n2smax

2) and O(n3smax
2) for the cases of infinite

and given multiplicities, respectively. Our results improve both running times by a factor of
Ω̃(nmax{1, n/smax}).

1 Introduction

The knapsack problem is a fundamental problem in combinatorial optimization. It has been studied
extensively from theoretical as well as practical perspectives (e.g., [2, 9, 13, 19, 20]), as it is one
of the most well-known NP-hard problems [12]. The goal is to pack a knapsack of size t with the
maximum value from a collection of n items with given sizes and values. More formally, item i has
size si and value vi, and we want to maximize

∑
i∈S vi such that S ⊆ [n] and

∑
i∈S si ≤ t.
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Recent evidence suggests that a classic O(nt) dynamic-programming solution for the knapsack
problem [2] might be the fastest in the worst case. In fact, solving the knapsack problem was
shown to be equivalent to the (min,+) convolution problem [11], which is thought to be facing a
quadratic-time barrier. The two-dimensional extension, called the (min,+) matrix product problem,
appears in several conditional hardness results. These hardness results for (min,+) matrix product
and equivalently (max,+) matrix product are in contrast to the more famous (+, ·) convolution
(generally known as polynomial multiplication), that has an O(n log n)-time solution via Fast Fourier
Transform (FFT) [10].

Before moving forward, we present the general form of convolution problems. Consider two
vectors a = (a0, a1, . . . , am−1) and b = (b0, b1, . . . , bn−1). We use the notations |a| = m and |b| = n
to denote the size of the vectors. For two associative binary operations ⊕ and ⊗, the (⊕,⊗)
convolution of a and b is a vector c = (c0, c1, . . . , c2n−1), defined as follows.

ci = ⊕
j:0≤j<m
0≤i−j<n

{aj ⊗ bi−j}, for 0 ≤ i < m+ n− 1.

The past few years have seen increased attention towards several variants of convolution problems
(e.g., [1, 3, 4, 8, 11, 16, 17]). Most importantly, many problems, such as tree sparsity, subset sum,
and 3-sum, have been shown to have conditional lower bounds on their running time via their
intimate connection with (min,+) convolution.

In particular, previous studies have shown that (max,+) convolution, knapsack, and tree sparsity
are computationally (almost) equivalent [11]. However, these hardness results are obtained by
constructing instances with arbitrarily high item values (in the case of knapsack) or vertex weights
(in the case of tree sparsity). A fast algorithm can solve (min,+) convolution in almost linear time
when the vector elements are bounded. This raises the question of whether moderate instances
of knapsack or tree sparsity can be solved in subquadratic time. The recent breakthrough of Chan
and Lewenstein [8] implicitly suggests that knapsack and tree sparsity may be solved in barely
subquadratic time O(n1.859) when the values or weights are small1.

Our main results are algorithms with near-linear running times for the knapsack problem, if
either the values or sizes of items are small integers. More specifically, if item sizes are integers
bounded by smax, the running time of our algorithm is Õ((n+t)smax). If the item values are integers
bounded by vmax, our algorithm runs in time Õ(n+ tvmax). Best previously known running times
were O(nt), O(n2smax) and O(nsmaxvmax) [20]. As with prior work, we focus on two special cases
of 0/1 knapsack (each item may be used at most once) and unbounded knapsack (each item can be
used many times), but unlike previous work we present near linear-time exact algorithms for these
problems.

Our results are similar in spirit to the work of Zwick [26] (JACM 2002) wherein the author
obtains a subcubic time algorithm for the all pairs shortest paths problem (APSP) where the edge
weights are small integers. Similar to knapsack and (max,+) convolution, there is a belief that
APSP cannot be solved in truly subcubic time. We obtain our results through new sophisticated
algorithms for improving the running time of convolution in certain settings whereas Zwick uses
the known convolution techniques as black box and develops randomized algorithms to improve the
running time of APSP.

We emphasize that our work does not improve the complexity of the general (min,+) convolution
problem, for which no strongly subquadratic-time algorithm is known to exist. Nevertheless, our

1It follows from the reduction of [11] that any subquadratic algorithm for convolution yields a subquadratic
algorithm for knapsack.
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techniques provide almost linear running time for the parameterized case of (min,+) convolution
when the input numbers are bounded by the parameters.

At the core of our algorithms lies the prediction technique: Roughly speaking, this new technique
enables us to compute the convolution of two vectors in time Õ(n emax) when an approximation
of the solution within an additive error of emax is available. Note that such an approximation is
not difficult to find for a typical knapsack instance (e.g., for emax ≥ vmax): simply sort the items
in decreasing order of value to cost ratio and greedily pack your knapsack with them. A summary
of the previous known results along with our new2 results is shown in Table 1. Notice that in
0/1 knapsack, t is always bounded by n smax and thus our results improve the previously known
algorithms even when t appears in the running time.

Table 1: n and t denote the number of items and the knapsack size respectively. vmax and smax

denote the maximum value and size of the items. Notice that when the knapsack problem does
not have multiplicity, t is always bounded by nsmax and thus our running times are always better
than the previously known algorithms. Theorems C.2, D.3, and D.5, as well as Corollary C.3 are
randomized and output a correct solution with probability at least 1− n−10.

setting running time our improvement

general setting O(nt) [10] -

limited size knapsack O(n2smax) [20] Õ((n+ t)smax)
(Theorem C.2)

limited size knapsack, unlimited multiplicity O(n2smax
2) [22] Õ(nsmax + smax

2 min{n, smax})
(Theorem D.3)

Õ((n+ t)smax)
(Corollary C.3)

limited size knapsack, given multiplicity O(n3smax
2) [22] Õ(nsmax

2 min{n, smax})
(Theorem D.5)

limited value knapsack - Õ(n+ tvmax)
(Theorem A.4)

limited value knapsack, unlimited multiplicity - Õ(n+ tvmax)
(Theorem B.5)

limited value and size O(nsmaxvmax) [20] Õ((n+ t) min{vmax, smax})
(Theorems A.4 and C.2)

2 Our Contribution

2.1 Our Technique

Recall that the (+, ·) convolution is indeed polynomial multiplication. In this work, we are mostly
concerned with (max,+) convolution (which is computationally equivalent to minimum convolution).
We may drop all qualifiers and simply call it convolution. We use the notation a ? b for (max,+)
convolution and a × b for polynomial multiplication of two vectors a and b. Also we denote by a?k

the k’th power of a in the (max,+) setting, that is a ? a ? . . . ? a︸ ︷︷ ︸
k times

.

2We wish to emphasize that, as far as we know, our results are in no way implied by previous work (e.g., [14, 15],
which tend to have in the running time the sum of the profit values rather than their maximum.).
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If there is no size or value constraint, it has been shown that knapsack and (max,+) convolution
are computationally equivalent with respect to subquadratic algorithms [11]. In other words, any
subquadratic solution for knapsack yields a subquadratic solution for (max,+) convolution and vice
versa. Following this intuition, our algorithms are closely related to algorithms for computing
(max,+) convolution in restricted settings. The main contribution of this work is a technique
for computing the (max,+) convolution of two vectors, namely the prediction technique. Roughly
speaking, the prediction technique enables us to compute the convolution of two vectors in time
Õ(nemax) when an approximation of the solution within an additive error of emax is given. As
we show in Sections A and B, this method can be applied to the 0/1 knapsack and unbounded
knapsack problems to solve them in Õ(n emax) time (e.g., if emax ≥ vmax). In Section 3, we explain
the prediction technique in three steps:

1. Reduction to polynomial multiplication: We make use of a classic reduction to compute
a ? b in time Õ(emax(|a| + |b|)) when all values of a and b are integers in the range [0, emax].
This reduction has been used in many previous works (e.g., [1, 4, 8, 25, 26]). In addition to
this, we show that when the values are not necessarily integral, an approximation solution
with additive error 1 can be found in time Õ(emax(|a|+ |b|)). We give a detailed explanation
of this in Section H.

2. Small distortion case: Recall that a?b denotes the (max,+) convolution of vectors a and b.
In the second step, we define the “small distortion” case where ai + bj ≥ (a ? b)i+j − emax for
all i and j. Notice that the case where all input values are in the range [0, emax] is a special
case of the small distortion case. Given such a constraint, we show that a?b can be computed
in time Õ(emaxn) using the reduction to polynomial multiplication described in the first step.
We obtain this result via two observations:

(a) If we add a constant value C to each component of either a or b, each component of
their “product” a ? b increases by the same amount C.

(b) For a given constant C, adding a quantity iC to every element ai and bi of the vectors
a and b, for all i, results in an increase of iC in (a ? b)i for every 0 ≤ i < |a ? b| (here
|a ? b| denotes the size of vector a ? b).

These two operations help us transform the vectors a and b such that all elements fall in the
range [0, O(emax)]. Next, we approximate the convolution of the transformed vectors via the
results of the first step, and eventually compute a ? b in time Õ(emaxn). We give more details
in Section 3.1.

3. Prediction: We state the prediction technique in Section 3.2. Roughly speaking, when an
estimate of each component of the convolution is available, with additive error emax, this
method lets us compute the convolution in time Õ(emaxn). More precisely, in the prediction
technique, we are given two integer vectors a and b, as well as |a| intervals [xi, yi]. We are
guaranteed that (1) for every 0 ≤ i < |a| and xi ≤ j ≤ yi, the difference between (a ? b)i+j
and ai + bj is at most emax; (2) for every 0 ≤ i < |a ? b| we know that for at least one j we
have aj + bi−j = (a ? b)i and xi ≤ j ≤ yi; and (3) if i < j, then both xi ≤ xj and yi ≤ yj hold.
We refer to the intervals as an “uncertain solution” for a ? b within an error of emax.

The reason we call such a data structure an uncertain solution is that given such a structure,
one can approximate the solution in almost linear time by iterating over the indices of the resulting
vector and for every index i find one j such that xj ≤ i−j ≤ yj and approximate (a?b)i by aj+bi−j .
Such a j can be found in time O(log n) via binary search since the boundaries of the intervals are
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monotone. In the prediction technique, we show that an uncertain solution within an additive error
of emax suffices to compute the convolution of two vectors in time Õ(emaxn). We obtain this result
by breaking the problem into many subproblems with the small distortion property and applying
the result of the second step to compute the solution of each subproblem in time Õ(emaxn). We
show that all the subproblems can be solved in time Õ(emaxn) in total, and based on these solutions,
a ? b can be computed in time Õ(emaxn). We give more details in Section 3.2.

Theorem 3.4 [restated informally]. Given two integer vectors a and b and an uncertain solution
for a ? b within an error of emax, one can compute a ? b in time Õ(emaxn).

Notice that in Theorem 3.4, there is no assumption on the range of the values in the input
vectors and the running time depends linearly on the accuracy of the uncertain solution.

2.2 Main Results

We show in Section A that the prediction technique enables us to solve the 0/1 knapsack problem
in time Õ(vmaxt + n). To this end, we define the knapsack convolution as follows: given vectors a
and b corresponding to the solutions of two knapsack problems ka and kb, the goal is to compute
a ? b. If a vector a is the solution of a knapsack problem, ai denotes the maximum total value
of the items that can be placed in a knapsack of size i. The only difference between knapsack
convolution and (max,+) convolution is that in the knapsack convolution both vectors adhere to
knapsack structures, whereas in the (max,+) convolution there is no assumption on the values of
the vectors. We show that if in the knapsack problems, the values of the items are integers bounded
by vmax, then an uncertain solution for a ? b within an error of vmax can be computed in almost
linear time. The key observation here is that one can approximate the solution of the knapsack
problem within an additive error of vmax as follows: sort the items in descending order of vi/si and
put the items in the knapsack one by one until either we run out of items or the remaining space
of the knapsack is too small for the next item. Based on this algorithm, we compute an uncertain
solution for the knapsack convolution in almost linear time and via Theorem 3.4 compute a ? b in
time Õ(vmaxn). Finally, we use the recent technique of [11] to reduce the 0/1 knapsack problem to
the knapsack convolution. This yields an Õ(vmaxt+n) time algorithm for solving the 0/1 knapsack
problem when the item values are bounded by vmax.

Theorem A.4 [restated]. The 0/1 knapsack problem can be solved in time Õ(vmaxt+ n) when the
item values are integer numbers in the range [0, vmax].

As another application of the prediction technique, we present an algorithm that receives a
vector a and an integer k as input and computes a?k. We show that if the values of the input
vector are integers in the range [0, emax], the total running time of the algorithm is Õ(emax|a?k|).
This improves upon the trivial Õ(emax

2|a?k|). Similar to what we do in Section A, we again show
that the convolution of two powers of a can be approximated within a small additive error. We use
this intuition to compute an uncertain solution within an additive error of O(emax) and apply the
prediction technique to compute the exact solution in time Õ(emax|a?k|).

Theorem B.4 [restated]. Let a be an integer vector with values in the range [0, emax]. For any
integer k ≥ 1, one can compute a?k in time Õ(emax|a?k|).

As a consequence of Theorem B.4, we show that the unbounded knapsack problem can be solved
in time Õ(n+ vmaxt).

4



Theorem B.5 [restated]. The unbounded knapsack problem can be solved in time Õ(n + vmaxt)
when the item values are integers in the range [0, vmax].

To complement our results, we also study the knapsack problem when the item values are
unbounded real values, but the sizes are integers in the range [1, smax]. For this case, we present
a randomized algorithm that solves the problem w.h.p.3 in time Õ(smax(n + t)). The idea is to
first put the items into t/smax buckets uniformly at random. Next, we solve the problem for each
bucket separately, up to a knapsack size Õ(smax). We use the Bernstein’s inequality to show that
w.h.p., only a certain interval of the solution vectors are important and we can neglect the rest
of the values, thereby enabling us to merge the solutions of the buckets efficiently. Based on this,
we present an algorithm to merge the solutions of the buckets in time Õ(smax(n + t)), yielding a
randomized algorithm for solving the knapsack problem in time Õ(smax(n + t)) w.h.p. when the
sizes of the items are bounded by smax.

Theorem C.2 [restated]. There exists a randomized algorithm that correctly computes the solution
of the knapsack problem in time Õ(smax(n+ t)) w.h.p., when the item sizes are integers in the range
[1, smax].

2.3 Implication to Strongly Polynomial Time Algorithms

When we parameterize the 0/1 knapsack problem by max{si} ≤ smax, one can set t′ := min(t, nsmax)
and solve the problem with knapsack size t′ in time Õ((t′ + n)smax) = Õ(nsmax

2). This yields
a strongly polynomial time solution for the knapsack problem. However, this only works when
we are allowed to use each item only once. In Section D, we further extend this solution to
the case where each item (si, vi) has a given multiplicity mi. For this case, our algorithm
runs in time Õ(nsmax

2 min{n, smax}) when mi’s are arbitrary and solves the problem in time
Õ(nsmax min{n, smax}) when mi = ∞ for all i. Both results improve the algorithms of [22] by
a factor of Ω̃(max{n, smax}) in the running time. These results are all implied by Theorem C.2.

2.4 Further Results

It has been previously shown that tree sparsity, knapsack, and convolution problems are equivalent
with respect to their computational complexity. However, these reductions do not hold for the case
of small integer inputs. In Sections F and G, we show some reductions between these problems in
the small input setting. In addition to this, we introduce the tree separability problem and explain
its connection to the rest of the problems in both general and small integer settings. We also present
a linear time algorithm for tree separability when the degrees of the vertices and edge weights are
all small integers.

3 The Prediction Technique for (max,+) Convolution

In this section, we present several algorithms for computing the (max,+) convolution (computa-
tionally equivalent to (min,+) convolution) of two vectors. Recall that in this problem, two vectors
a and b are given as input and the goal is to compute a vector c of length |a|+ |b| − 1 such that

ci =
i

max
j=0

[aj + bi−j ].

3With probability at least 1 − n−10.
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bounded tree sparsity

Õ(wmaxn)

bounded tree separability

Õ(wmaxn)

bounded knapsack

Õ(vmaxn)

bounded convolution

Õ(emaxn)

dmax-distance bounded convolution Õ(dmaxn)

0/1 tree sparsity Õ(n)

Figure 1: Desired running times are specified in the white boxes. Here a→ b means that an efficient
algorithm for a yields an efficient algorithm for b.

For this definition only, we assume that each vector a or b is padded on the right with sufficiently
many −∞ components: i.e., ai = −∞ for i ≥ |a| and bj = −∞ for j ≥ |b|.

Assuming |a| + |b| = n, a trivial algorithm to compute c from a and b is to iterate over all
pairs of indices and compute c in time O(n2). Despite the simplicity of this solution, thus far, it
has remained one of the most efficient algorithms for computing the (max,+) convolution of two
vectors. However, for special cases, more efficient algorithms compute the result in subquadratic
time. For instance, as we show in Section H, if the values of the vectors are integers in the range
[0, emax], one can compute the (max,+) convolution of two vectors in time Õ(emaxn).

In this section, we present several novel techniques for multiplying vectors in the (max,+)
setting in truly subquadratic time under different assumptions. The main result of this section
is the prediction technique explained in Section 3.2. Roughly speaking, we define the notion of
uncertain solution and show that if an uncertain solution of two integer vectors with an error
of emax is given, then it is possible to compute the (max,+) convolution of the vectors in time
Õ(emaxn). Later in Sections A and B we use this technique to improve the running time of the
knapsack and other problems.

In our algorithm, we subsequently make use of a classic reduction from (max,+) convolution to
polynomial multiplication. In the interest of space, we skip this part here and explain it in Section H.
The same reduction has been used as a blackbox in many recent works [1, 4, 8, 25, 26]. Based on
this reduction, we show that an Õ(emaxn) time algorithm can compute the convolution of two
integer vectors whose values are in the range [0, emax]. We further explain in Section H that even
if the values of the vectors are real but in the range [0, emax], one can approximate the solution
within an additive error less than 1. These results hold even if the input values can be either
in the interval [0, emax] or in the set {−∞,∞}. We use this technique in Section 3.1 to compute
the (max,+) convolution of two integer vectors in time Õ(emaxn) when for every i and j we have
|ai + bj − (a ? b)i+j | ≤ emax. Finally, in Section 3.2 we use these results to present the prediction

technique for computing the (max,+) convolution of two vectors in time Õ(emaxn).

3.1 An Õ(emaxn) Time Algorithm for the Case of Small Distortion

In this section we study a variant of the (max,+) convolution problem where every ai + bj differs
from (a ? b)i+j by at most emax. Indeed this condition is strictly weaker than the condition studied

in Section H. Nonetheless we show that still an Õ(emaxn) time algorithm can compute a ? b if the
values of the vectors are integers but not necessarily in the range [0, emax]. In the interest of space,
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we omit the proofs of Lemmas 3.1, 3.2, and 3.3 and include them in Section I.
We first assume that both vectors a and b have size n. Moreover, since the case of n = 1

is trivial, we assume w.l.o.g. that n > 1. In order to compute a ? b for two vectors a and b, we
transform them into two vectors a′ and b′ via two operations. In the first operation, we add a
constant C to every element of a vector. In the second operation, we fix a constant C and add iC
to every element i of both vectors. We delicately perform these operations on the vectors to make
sure the resulting vectors a′ and b′ have small values. This enables us to approximate (and not
compute since the values of a′ and b′ are no longer integers) the solution of a′ ? b′ in time Õ(emaxn).
Finally, we show how to derive the solution of a ? b from an approximation for a′ ? b′. We begin by
observing a property of the vectors.

Lemma 3.1. Let a and b be two vectors of size n such that for all 0 ≤ i, j < n we have (a ? b)i+j −
ai − bj ≤ emax. Then,

• for every 0 ≤ i, j < n, we have |(ai − bi)− (aj − bj)| ≤ emax; and

• for every 0 ≤ i ≤ j ≤ k < n such that j − i = k − j, we have |aj − (ai + ak)/2| ≤ emax.

Note that since there is no particular assumption on vector a, the condition of Lemma 3.1
carries over to vector b as well. Next we use Lemma 3.1 to present an Õ(emaxn) time algorithm for
computing a ? b. We obtain this result via two observations:

1. If we add a constant value C to each component of either a or b, each component of their
“product” a ? b increases by the same amount C.

2. For a given constant C, adding a quantity iC to every element ai and bi of the vectors a and
b, for all i, results in an increase of iC in (a ? b)i for every 0 ≤ i < |a ? b|.

These two operations help us transform the vectors a and b such that all elements fall in the range
[0, O(emax)]. Next, we approximate the convolution of the transformed vectors via the results of
Section H, and eventually compute a ? b in time Õ(emaxn).

Lemma 3.2. Let a and b be two integer vectors of size n such that for all 0 ≤ i, j < n we have
(a ? b)i+j − ai − bj ≤ emax. One can compute a ? b in time Õ(emaxn).

All that remains is to extend our algorithm to the case where we no longer have |a| = |b|. We
assume w.l.o.g. that |b| ≥ |a| and divide |b| into d|b|/|a|e vectors of length |a| such each bi appears
in at least one of these vectors. Then, in time O(emax|a|) we compute the (max,+) convolution of a
and each of the smaller intervals, and finally use the results to compute a?b in time Õ(emax(|a|+|b|)).

Lemma 3.3. Let a and b be two integer vectors such that for all 0 ≤ i < |a| and 0 ≤ j < |b| we
have (a ? b)i+j − ai − bj ≤ emax. One can compute a ? b in time Õ(emax(|a|+ |b|)).

3.2 Prediction

In this section, we explain the prediction technique and show how it can be used to improve the
running time of classic problems when the input values are small. Roughly speaking, we show that
in some cases an approximation algorithm with an additive error of emax can be used to compute the
exact solution of a (max,+) convolution in time Õ(emaxn). In general, an additive approximation
of emax does not suffice to compute the (max,+) convolution in time Õ(emaxn). However, we show
that under some mild assumptions, an additive approximation yields a faster exact solution. We
call this the prediction technique.
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Suppose for two integer vectors a and b of size n, we wish to compute a ? b. The values of
the elements of a and b range over a potentially large (say O(n)) interval and thus Algorithm 7
doesn’t improve the O(n2) running time of the trivial solution. However, in some cases we can
predict which ai’s and bj ’s are far away from (a ? b)i+j . For instance, if a and b correspond to the
solutions of two knapsack problems whose item weights are bounded by emax, a well-known greedy
algorithm can approximate a ? b within an additive error of emax (ai and bi denote the solutions
of the knapsack problem for size i). The crux of the argument is that if we sort the items with
respect to the ratio of weight over size in descending order and fill the knapsack in this order until
we run out of space, we always get a solution of at most emax away from the optimal. Now, if
ai + bj is less than the estimated value for (a ? b)i+j for some i and j, then there is no way that
the pair (ai, bj) contributes to the solution of a ? b. With a more involved argument, one could
observe that whenever ai + bj is at least emax smaller than the estimated solution for (a ? b)i+j ,
then ai + bk < (a ? b)i+k for either all k’s in [j, n − 1] or all k’s in [0, j]. We explain this in more
details in Section A.

This observation shows that in many cases, (ai, bj) pairs that are far from (a ? b)i+j can be
trivially detected and ignored. Therefore, the main challenge is to handle the (ai, bj) options that
are close to (a ? b)i+j . Our prediction technique states that such instances can also be solved in
subquadratic time. To this end, suppose that a and b are two integer vectors of size n, and for
every 0 ≤ i < |a| we have an interval [xi, yi], and we are guaranteed that ai + bj is at most emax

away from (a ? b)i+j for all j ∈ [xi, yi]. Also, we know that for any 0 ≤ i < |a ? b| there exists a j
such that aj + bi−j = (a ? b)i and xj ≤ i − j ≤ yj . We call such data an uncertain solution. We
show in Theorem 3.4 that if an uncertain solution is given, then one can compute a ? b in time
Õ(emaxn). For empty intervals only, yi is allowed to be smaller than xi.

Theorem 3.4. Let a and b be two integer vectors and assume we have |a| intervals [xi, yi] such
that

• ai + bj ≥ (a ? b)i+j − emax for all 0 ≤ i < |a| and j ∈ [xi, yi];

• for all 0 ≤ i < |a? b|, there exists an index j such that aj + bi−j = (a? b)i and xj ≤ i− j ≤ yj;
and

• 0 ≤ xi, yi < |b| for all intervals and xi ≤ xj and yi ≤ yj hold for all 0 ≤ i < j < |a|.

Then, one can compute a ? b from a, b, and the intervals in time Õ(emax(|a|+ |b|)).

Proof. One can set n equal to the smallest power of two greater than max{|a|, |b|} and add extra
−∞’s to the end of the vectors to make sure |a| = |b| = n. Next, for every newly added element of
a we set its corresponding interval [xi, yi] to (n − q, n − q − 1) (that is, an empty interval) where
q is the number of newly added −∞’s to the end of b. This way, all conditions of the theorem are
met and |a| + |b| is multiplied by at most a constant factor. Therefore, from now on, we assume
|a| = |b| = n and that n is a power of two. Keep in mind that for every i with property xi ≤ yi,
none of {ai, bxi , bxi+1, . . . , byi} is equal to −∞.

Our algorithm runs in log n+ 1 rounds. In every round we split b into several intervals. For an
interval [α, β] of b we call the projection of [α, β] the set of all indices i of a that satisfy both xi ≤ α
and yi ≥ β. We denote the projection of an interval [α, β] by P(α, β). We first show that for every
0 ≤ α ≤ β < n, P(α, β) corresponds to an interval of a. We defer the proof of Observation 3.1 to
Appendix J.

Observation 3.1. For every 0 ≤ α ≤ β < n, P(α, β) is an interval of a.
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Furthermore, for any pair of disjoint intervals [α1, β1] and [α2, β2], we observe that P(α1, β1) \
P(α2, β2) is always an interval. Similar to Observation 3.1, we include the proof of Observation 3.2
in Appendix J.

Observation 3.2. For 0 ≤ α1 ≤ β1 < α2 ≤ β2 < n, both P(α1, β1) \ P(α2, β2) and P(α2, β2) \
P(α1, β1) are intervals of the indices of a.

The proof for P(α2, β2) \ P(α1, β1) being an interval follows from symmetry.
Before we start the algorithm, we construct a vector c of size 2n− 1 and set all its indices equal

to −∞. In Round 1 of our algorithm, we only have a single interval [α1, β1] = [0, n − 1] for b.
Therefore, we compute P(0, n − 1) = [γ1, δ1] and construct a vector a1 of size δ1 − γ1 + 1 and set
a1i = ai+γ . Similarly, we construct a vector b1 of size β1 − α1 + 1 and set b1i = bi+α. Next, we
compute c1 = a1 ? b1 using Lemma 3.3, and then based on that we set ci+α+γ ← max{ci+α+γ , c′i}
for all 0 ≤ i < |c1|.

The second round is similar to Round 1, except that this time we split b into two intervals
[α1, β1] and [α2, β2] where α1 = 0, β1 = n/2− 1, α2 = n/2, and β2 = n− 1. For interval [α1, β1] of
b we compute [γ1, δ1] = P(α1, β1) \ P(α2, β2) and similarly for the second interval of b we compute
[γ2, δ2] = P(α2, β2) \ P(α1, β1). Similar to Round 1, we construct a1, a2, b1, b2 from a and b with
respect to the intervals and compute c1 = a1 ? b1 and c2 = a2 ? b2. Finally we update the solution
based on c1 and c2.

More precisely, in Step s + 1 of the algorithm, we split b into 2s intervals [αi, βi]
where αi = (i − 1)2(logn)−s and βi = i2(logn)−s − 1. For odd intervals we com-
pute [γ2i+1, δ2i+1] = P(α2i+1, β2i+1) \ P(α2i, β2i) and for even intervals we compute
[γ2i, δ2i] = P(α2i, β2i)\P(α2i+1, β2i+1). Next, we construct vectors a1, a2, . . . , a2

s
and b1, b2, . . . , b2

s

from a and b and compute ci = ai ? bi using Lemma 3.3 for every 1 ≤ i ≤ 2s. Finally, for every
1 ≤ i ≤ 2s and 0 ≤ j < |ci|, we set cαi+γi+j = max{cαi+γi+j , c

i
j}.

We show that (i) Algorithm 1 finds a correct solution for a ? b, and (ii) its running time is
Õ(emax(|a|+ |b|)). Observe that Line 1 of Algorithm 1 runs in time O(n) and all basic operations
(e.g., Lines 4 and 5) run in time O(1) and thus all these lines in total take time O(n log n) = Õ(n).
Moreover, for any [α, β], P(α, β) can be found in time O(log n) by binary searching the indices of
a. More precisely, in order to find P(α, β) we need to find an index γ of a such that xγ ≤ α and
an index δ such that yδ ≥ β. Since both x and y are non-decreasing, we can find such indices in
time O(log n). Therefore, the total running times of Lines 8, 11, and 13 is O(n log2 n) = Õ(n). The
running time of the rest of the operations (Lines 14, 15, 16, and 18) depend on the length of the
intervals [αi, βi] and [γi, δi]. For a Round s+ 1, let `a = |a1|+ |a2|+ . . . , |a2s | be the total length of
the intervals [γi, δi]. Similarly, define `b = |b1|+ |b2|+ . . .+ |b2s | and `c = |c1|+ |c2|+ . . .+ |c2s | as
the total length of the intervals [αi, βi] and vectors ci. It follow from the algorithm that in Round
s+1, the running time of Lines 14, 15, and 18 is Õ(`c) and the running time of Line 16 is Õ(emax`c).
Therefore, it only suffices to show that `c = O(n) to prove Algorithm 1 runs in time Õ(emaxn).

Notice that in every Round s+1 we have |bi| = 2logn−s and thus `b = 2s2logn−s = n. Moreover,
for every ci we have ci = ai ? bi and thus |ci| ≤ |ai| + |bi|. Therefore, `c ≤ `a + `b = `a + n.
Thus, in order to show `c = O(n), we need to prove that `a = O(n). To this end, we argue that
for every 0 ≤ i < n, the i’th element of a appears in at most two intervals of [γi, δi]. Suppose
for the sake of contradiction that for 0 ≤ αj1 < βj1 < αj2 < βj2 < αj3 < βj3 we have i ∈
[γj1 , δj1 ] ∩ [γj2 , δj2 ] ∩ [γj3 , δj3 ]. Recall that depending on the parity of j2, [γj2 , δj2 ] is either equal to
P(αj2 , βj2) \ P(αj2+1, βj2+1) or P(αj2 , βj2) \ P(αj2−1, βj2−1) and since i ∈ [γj2 , δj2 ] then either of
i /∈ P(αj2−1, βj2−1) or i /∈ P(αj2+1, βj2+1) hold. This implies that either yi < βj2+1 or xi > αj2−1
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Algorithm 1: ConvolutionViaPredictionMethod(a, b, emax, xi’s, yi’s)

Data: Two integer vectors a and b of size n, intervals [xi, yi] for 0 ≤ i < n meeting the
conditions of Theorem 3.4

Result: a ? b
1 c← a vector of size 2n− 1 with indices set to ∞ initially;
2 for s ∈ [0, log n] do
3 for i ∈ [1, 2s] do

4 αi ← (i− 1)2(logn)−s;

5 βi ← i2(logn)−s − 1;

6 for i ∈ [1, 2s] do
7 if s = 0 then
8 [γi, δi]← P(αi, βi);

9 else
10 if i is odd then
11 [γi, δi]← P(αi, βi) \ P(αi+1, βi+1);

12 else
13 [γi, δi]← P(αi, βi) \ P(αi−1, βi−1);

14 ai ← a vector of size δi − γi + 1 s.t. aij = aγi+j ;

15 bi ← a vector of size 2(logn)−s s.t. bij = bαi+j ;

16 ci ← DistortedConvolution(ai, bi, emax);
17 for j ∈ [1, |ci|] do
18 cαi+γi+j ← max{cαi+γi+j , c

i
j};

19 Return c;

which imply either i /∈ P(αj1 , βj1) or i /∈ P(αj3 , βj3) which is a contradiction. Thus, `a ≤ 2n and

therefore `c ≤ 3n. This shows that Algorithm 1 runs in time Õ(emaxn).
To prove correctness, we show that (i) every ai and bi meet the condition of Lemma 3.3, and

(ii) for every ai and bj such that j ∈ [xi, yi] in some round of the algorithm and for some k, ak

contains ai and bk contains bj .
We start with the former. Due to our algorithm, in every round for every [αi, βi] we have

[γi, δi] ⊆ P(αi, βi). This implies that for every i′ ∈ [γi, δi] and every j′ ∈ [αi, βi] we have

aii′−γi + bij′−αi
− emax = ai′ + bj′ − emax ≥ (a ? b)i′+j′ ≥ (ai ? bi)i′+j′−γi′−αj′

.

Thus, the condition of Lemma 3.3 holds for every ai and bi.
We finally show that for every 0 ≤ i < n and every 0 ≤ j < n such that j ∈ [xi, yi], in some

round of the algorithm we have j ∈ [αk, βk] and i ∈ [γk, δk] for some k. To this end, consider the
first Round s+1 in which i ∈ P(αdj/2logn−se, βdj/2logn−se). We know that this eventually happens in
some round since in Round log n+ 1 we have i ∈ P(αdj/2logn−logne, βdj/2logn−logne) = P(j, j). Round
s+ 1 is the first round that i ∈ P(αdj/2logn−se, βdj/2logn−se) happens and thus either s = 0 or s > 0.
The former completes the proof since it yields i ∈ [αdj/2logn−se, βdj/2logn−se]. The latter implies that
i /∈ [αdj/2logn−s+1e, βdj/2logn−s+1e] and thus i ∈ [αdj/2logn−se, βdj/2logn−se]. Thus, in Round s + 1 we

have i ∈ [γk, δk] and j ∈ [αk, βk] for k = dj/2logn−se. �
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A The Knapsack Problem

In this section, we consider the knapsack problem and present a fast algorithm that can solve
this problem for small values. In particular, when the maximum value of the items is constant,
our algorithm runs in linear time. In this problem, we have a knapsack of size t and n items each
associated to a size si and value vi. The goal is to place a subset of the items into the knapsack with
maximum total value subject to their total size being limited by t. In the 0/1 knapsack problem,
we are allowed to use each item at most once whereas in the unbounded knapsack problem, we can
use each item several times. From now on, every time we use the term knapsack problem we mean
the 0/1 knapsack problem unless stated otherwise.

A classic dynamic programming algorithm yields a running time of O(nt) [10] for the knapsack
problem. On the negative side, recently it has been shown that both the 0/1 and unbounded
knapsack problems are as hard as (max,+) convolution and thus it is unlikely to solve any of
these problems in time O((n + t)2−ε) for any ε > 0 [11]. However, there is no assumption on the
values of the items in these reductions and thus the hardness results don’t carry over to the case
of small values. In particular, a barely subquadratic time (O(t1.859 + n)) algorithm follows from
the work of [8] when the item values are constant integer numbers. In what follows, we show that
we can indeed solve the problem in truly subquadratic time when the input values are small. We
assume throughout this section that the values of the items are integers in range [0, vmax]. Using
the prediction technique we present an Õ(vmaxt+ n) time algorithm for the knapsack problem.

We begin by defining a knapsack variant of the (max,+) convolution in Section A.1 and show
that if the corresponding knapsack problems have non-negative integer values bounded by vmax,
then one can compute the (max,+) convolution of two vectors in time Õ(vmaxn). It follows from
the recent technique of [11] that using this type of (max,+) convolution, one can solve the knapsack
problem in time Õ(vmaxn). However, for the sake of completeness, we include a formal proof in
Appendix K.
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A.1 Knapsack Convolution

Let a and b be two vectors that correspond to the solutions of two knapsack instances ka and kb.
More precisely, ai is the maximum value of the items in knapsack problem ka with a total size of at
most i. Similarly, bi is the maximum value of the items in knapsack problem kb with a total size of
at most i. We show that if the values of the items in ka and kb are non-negative integers bounded
by vmax, then one can compute a ? b in time Õ(vmax(|a|+ |b|) + n) where n is the total number of
items in ka and kb.

The sketch of the algorithm is as follows: We first define the fractional variants of both the
knapsack problem and the knapsack convolution. We show that both problems can be efficiently
solved in time O(n log n) where n is the total number of items in each knapsack problem. Next,
we observe that any solution of the fractional knapsack problem can be turned into a solution
for the knapsack problem with an additive error of at most vmax. Similarly, any solution for the
fractional knapsack convolution is always at most 2vmax away from the solution of the knapsack
convolution. We then show that both the solution of the fractional knapsack problem and the
solution of fractional knapsack convolution have some properties. We explore these properties and
show that they enable us to find an uncertain solution for the knapsack convolution in time Õ(t+n).
This yields an Õ(vmaxn) time solution for knapsack convolution via Theorem 3.4. In the interest
of space, we omit some of the proofs of this section and include them in Appendix L.

We define the fractional variant of the knapsack problem as follows. In the fractional knapsack
problem, we are also allowed to divide the items into smaller pieces and the value of each piece is
proportional to the size of that piece. More formally, the fractional knapsack problem is defined as
follows:

Definition A.1. Given a knapsack of size t and n items with sizes s1, s2, . . . , sn and values
v1, v2, . . . , vn, the fractional knapsack problem is to find n non-negative real values f1, f2, . . . , fn
such that

∑
sifi ≤ t, fi ≤ 1 for all i, and

∑
fivi is maximized.

One well-known observation is that the fractional variant of the knapsack problem can be solved
exactly via a greedy algorithm: sort the items according to the ratio of value over size and put the
items into the knapsack accordingly. If at some point there is not enough space for the next item,
we break it into a smaller piece that completely fills the knapsack. We stop when either we run out
of items or the knapsack is full. We call this the greedy knapsack algorithm and name this simple
observation.

Observation A.1. The greedy algorithm solves the fractional knapsack problem in time O(n log n).

It is easy to see that in any solution of the greedy algorithm for knapsack, there is at most one
item in the knapsack which is broken into a smaller piece. Therefore, one can turn any solution
of the fractional knapsack problem into a solution of the knapsack problem by removing the only
item from the knapsack with fi < 1 (if any). If all the values are bounded by vmax, this hurts the
solution by at most an additive factor of vmax. Moreover, the solution of the fractional knapsack
problem is always no less than the solution of the integral knapsack problem. Thus, any solution
for the fractional knapsack problem can be turned into a solution for the knapsack problem with
an additive error of at most vmax.

Based on a similar idea, we define the fractional knapsack convolution of two vectors as follows:

Definition A.2. Let a and b be two vectors corresponding to two knapsack problems ka and kb with
knapsack sizes ta and tb. For a real value t, we define the fractional knapsack convolution of a and
b with respect to t as the solution of the knapsack problem with knapsack size t and the union of
items of ka and kb subject to the following two additional constraints:
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• The total size of the items of ka in the solution is bounded by ta.

• The total size of the times of kb in the solution is bounded by tb.

One can modify the greedy algorithm to compute the solution of the fractional knapsack con-
volution as well. The only difference is that once the total size of the items of either knapsack
instances in the solution reaches the size of that knapsack we ignore the rest of the items from that
knapsack. A similar argument to what we stated for Observation A.1 proves the correctness of this
algorithm.

Algorithm 2: GreedyAlgorithmForFractionalKnapsackConvolution(a, b, ka, kb)

Data: t, a, b, and two knapsack instances ka and kb corresponding to a and b.
Result: The solution of fractional knapsack convolution of a and b with respect to t

1 Let items be a sequence of size n containing all items of ka and kb;
2 Sort the items of items according to vi/si in non-increasing order.
3 Answer ← 0;
4 for i ∈ [1, n] do
5 if (si, vi) belongs to ka then
6 cut← min{si, t, ta};
7 Answer ← Answer + vicut/si;
8 t← t− cut;
9 ta ← ta − cut;

10 else
11 cut← min{si, t, tb};
12 Answer ← Answer + vicut/si;
13 t← t− cut;
14 tb ← tb − cut;

15 Return Answer;

Observation A.2. Algorithm 2 solves the fractional knapsack convolution in time O(n log n).

Again, one can observe that in any solution of the greedy algorithm for fractional knapsack
convolution, there are at most two items that are fractionally included in the solution (at most one
for each knapsack instance). Thus, we can get a solution with an additive error of at most 2vmax

for the knapsack convolution problem from the solution of the fractional knapsack convolution.
We explore several properties of the fractional solutions for the knapsack problems and the

knapsack convolution and based on them, we present an algorithm to compute an uncertain solution
for the knapsack convolution within an error of O(vmax). Define a′ : [0, ta]→ R and b′ : [0, tb]→ R
as the solutions of the fractional knapsack problems for ka and kb, respectively. Therefore, for any
real value x in the domain of the functions, a′(x) and b′(x) denote the solution of each fractional
knapsack problem for knapsack size x. Moreover, we define a function c : [0, ta + tb] → R where
c′(x) is the solution of the fractional knapsack convolution of a and b with respect to x. Note that
for all a′, b′, and c′, parameter x may be a real value. The following observations follow from the
greedy solutions for a′, b′, and c′.

Observation A.3. There exist non-decreasing functions Fa : [0, ta + tb]→ [0, ta] and Fb : [0, ta +
tb]→ [0, tb] such that c′(x) = a′(Fa(x)) + b′(Fb(x)).
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Since in Algorithm 2 we put the items greedily in the knapsack, for every 0 ≤ x ≤ ta, there
exists a 0 ≤ y ≤ ta + tb such that Fa(y) = x. Similarly, for every 0 ≤ x ≤ tb, there exists a
0 ≤ y ≤ ta + tb such that Fb(y) = x. We define F−1a (x) as the smallest y such that Fa(y) = x.
Moreover, F−1b (x) is equal to the smallest y such that Fb(y) = x.

Observation A.4. For an 0 ≤ x ≤ ta, y, and y′ such that 0 ≤ y < y′ ≤ F−1a (x) − x we have
c′(x+ y)− a′(x) + b′(y) ≥ c′(x+ y′)− a′(x)− b′(y′).

Observation A.5. For an 0 ≤ x ≤ ta, y, and y′ such that F−1a (x) − x ≤ y < y′ ≤ tb we have
c′(x+ y)− a′(x) + b′(y) ≤ c′(x+ y′)− a′(x)− b′(y′).

Observations A.4 and A.5 show that for any 0 ≤ x ≤ ta, if we define gx(y) = c′(x + y) −
a′(x) − b′(y) then gx is non-decreasing in the interval [0,F−1a (x) − x] and non-increasing in the
interval [F−1a (x) − x, tb]. Now, for every integer i ∈ [0, ta] define α′i to be the smallest number in
range [0,F−1a (x) − x] such that gi(α

′
i) ≤ 2vmax. Similarly, define β′i to be the largest number in

range [F−1a (x) − x, tb] such that gi(β
′
i) ≤ 2vmax. It follows from Observations A.4 and A.5 that

gi(x) ≤ 2vmax holds in the interval [α′i, β
′
i] and gi(x) > 2vmax holds for any x outside this range.

Moreover, Observations A.6 and A.7 imply that [α′i, β
′
i]’s are monotonic.

Observation A.6. Let x, x′, and y be three real values such that 0 ≤ x < x′ ≤ ta and 0 ≤ y ≤
F−1a (x)− x. Then c′(x+ y)− a′(x)− b′(y) ≤ c′(x′ + y)− a′(x′)− b′(y).

Observation A.7. Let x, x′, and y be three real values such that 0 ≤ x < x′ ≤ ta and 0 ≤
F−1a (x′)− x′ ≤ y. Then c′(x+ y)− a′(x)− b′(y) ≥ c′(x′ + y)− a′(x′)− b′(y).

Notice that for every pair of integers i and j such that α′i ≤ j ≤ β′i we have c′(i+j)−a′(i)−b′(j) ≤
2vmax. Recall that a′ and b′ are the solutions of the fractional knapsack problems and thus a′(i)−ai
and b′(j)− bj are bounded by vmax. Moreover, since c′(i+ j) is always at least as large as ci+j , we
have ci+j − ai − bj ≤ 4vmax for all α′i ≤ j ≤ β′i. Furthermore, for every integer j ∈ [0, tb] \ [α′i, β

′
i]

we have c′(i + j) − a′(i) − b′(j) > 2vmax. Similarly, one can argue that c′(i + j) ≤ ci+j + 2vmax,
a′(i) ≥ ai, and b′(j) ≥ bj and thus ci+j − ai − bj > 0 which means that intervals [α′i, β

′
i] make an

uncertain solution for a?b within an error of 4vmax. To make the intervals integer, we set αi = dα′ie
and βi = bβ′ic. Since [αi, βi] is also an uncertain solution within an error of 4vmax we can compute

a ? b in time Õ(vmax(|a|+ |b|) + n).

Theorem A.3. Let ka and kb be two knapsack problems with knapsack sizes ta and tb and n items
in total. Moreover, let the item values in ka and kb be integer values bounded by vmax and a and b
be the solutions of these knapsack problems. There exists an Õ(vmax(ta + tb) + n) time algorithm
for computing a ? b using a, b, ka, and kb.

Proof. Let t = ta + tb be the largest index of a ? b. As shown earlier, intervals [αi, βi] formulated
above make an uncertain solution for a?b within an error of 4vmax. Thus, it only suffices to compute
these intervals and then using Theorem 3.4 we can compute a ? b in time Õ(vmax(|a| + |b|)). In
order to determine the intervals, we first compute three arrays a′, b′, and c′ with ranges [0, ta],
[0, tb], and [0, ta + tb], respectively. Then for every i in range [0, ta] we compute a′i to be the
solution to the fractional knapsack problem of ka with knapsack size i. This can be done in time
O(n log n + t), since we can use the greedy algorithm to determine these values. Similarly, we
compute b′i equal to the solution to the fractional knapsack problem for kb and ci equal to the
solution of the fractional knapsack convolution for a ? b. This step of the algorithm takes a total
time of O(n log n+ t) = Õ(n+ t).
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Along with the construction of array c′, we also compute two arrays Fa and Fb in time O(t)
where c′i = a′Fai

+ b′Fbi
. More precisely, every time we compute c′i for some integer i we also keep

track of the total size of the solution corresponding to each knapsack and store these values in
arrays Fa and Fb. Also one can compute an array F−1a from Fa in time O(t). Next, we iterate over
all integers i in range [0, ta] and for each i compute αi and βi in time O(log n). Recall that αi (βi) is
the smallest (largest) integer j in range [0,F−1a i− i] ([F−1a i− i, tb]) such that c′i+j−a′i− b′j ≤ 2vmax.

Moreover, c′i+j − a′i − b′j is monotonic in both ranges [0,F−1a i − i] and [F−1a i − i, tb] and hence
αi and βi can be computed in time O(log tb) for every i. This makes a total running time of
O(ta log tb) = Õ(t). Finally, since intervals [αi, βi] make an uncertain solution for a ? b within an
error of 4vmax, we can compute a ? b in time Õ(vmax(ta + tb) + n) (Theorem 3.4). �

In Appendix K we show that Theorem A.3 yields a solution for the 0/1 knapsack problem in
time Õ(vmaxn). The algorithm follows from the reduction of [11] from 0/1 knapsack to knapsack
convolution.

Theorem A.4 (a corollary of Theorem A.3 and the reduction of [11] from 0/1 knapsack to (max,+)
convolution). The 0/1 knapsack problem can be solved in time O(vmaxt+ n) when the item values
are integer numbers in range [0, vmax].
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B Computing a?k and Application to Unbounded Knapsack

Throughout this section, any time we mention a?k we mean

k times︷ ︸︸ ︷
a ? a ? . . . ? a. In this section, we

present another application of the prediction technique for computing the k’th power of a vector in
the (max,+) setting. The classic algorithm for this problem runs in time Õ(n2) and thus far, there
has not been any substantial improvement for this problem. We consider the case where the input
values are integers in range [0, emax], nonetheless, this result carries over to any range of integer
numbers within an interval of size emax.4 Using known FFT-based techniques, one can compute
a ? a in time Õ(emax|a|) (see Section H). However, the values of the elements of a?2 no longer lie in
range [0, emax] and thus computing a?2 ? a?2 requires more computation than a ? a. In particular,
the values of the elements of a?k/2 are in range [0, emaxk/2] and thus computing a?k/2 ? a?k/2 via
the known techniques requires a running time of Õ(emaxk|a?k|). The main result of this section
is an algorithm for computing a?k in time Õ(emax|a?k|). Moreover, we show that any prefix of
size n of a?k can be similarly computed in time Õ(emaxn). We later make a connection between
this problem and the unbounded knapsack problem and show this results in an Õ(emaxt+ n) time
algorithm for the unbounded knapsack problem when the item values are integers in range [0, emax].
Our algorithm is based on the prediction technique explained in Section 3.

We first explore some observations about the powers of a vector in the (max,+) setting. We
begin by showing that if b = a?k for some positive integer i, then the elements of b are (weakly)
monotone.

Lemma B.1. Let a be a vector whose values are in range [0, emax] and b = a?k for a positive integer
k. Then, for 0 ≤ i < j < |a?k| we have bj ≥ bi − emax.

Proof. If k = 1, the lemma follows from the fact that all values of the elements of a are in range
[0, emax]. For k > 1, we define c = a?k−1 and let l be an index of c with the maximum ci subject to
l ≤ j. Since b = c ? a we have bi = ci′ + ai−i′ for some i′. Note that ci′ ≤ cl and also all values of
the indices of c are bounded by emax. Thus we have bi ≤ cl + emax. In addition to this, since l ≤ j
we have bj ≥ cl + aj−i. Notice that all values of the indices of a are non-negative and therefore
bj ≥ cl. This along with the fact that bi ≤ cl + emax implies that bj ≥ bi − emax. �

Another observation that we make is that if for a k and a k′ we have |k−k′| ≤ 1, then a?k ?a?k
′

can be computed by just considering a few (i, j) pairs of the vectors with close values.

Lemma B.2. Let k and k′ be two positive integer exponents such that |k − k′| ≤ 1. Moreover, let
a be an integer vector whose elements’ values lie in range [0, emax]. Then, for every 0 ≤ i ≤ |a?k|,
there exist two indices j and i− j such that (i) a?k+k

′

i = akj + a?k
′

i−j and (ii) |akj − a?k
′

i−j | ≤ emax.

Proof. By definition a?k+k
′

=

k+k′ times︷ ︸︸ ︷
a ? a ? . . . ? a. Therefore, for every 0 ≤ i < |a?k+k′ |, there exist

k+ k′ indices i1, i2, . . . , ik+k′ such that a?k+k
′

i = ai1 + ai2 + . . .+ aik+k′ and i1 + i2 + . . .+ ik+k′ = i.
We assume w.l.o.g. that ai1 ≤ ai2 ≤ . . . ≤ aik+k′ . We separate the odd and even indices of i to form
two sequences i1, i3, . . . and i2, i4, . . .. Notice that since |k−k′| ≤ 1, the size of one of such sequences
is k and the size of the other one is k′. We assume w.l.o.g. that the size of the odd sequence is
k and the size of the even sequence is k′. We now define j = i1 + i3 + . . . and j′ = i2 + i4 + . . ..
Since i1 + i2 + . . . = i then j′ = i − j holds. Since a?k+k

′

i = ai1 + ai2 + . . . + aik+k′ we also have

a?kj = ai1 + ai3 + . . ., a?k
′

j′ = ai2 + ai4 + . . ., and also a?k+k
′

i = a?kj + a?k
′

j′ . To complete the proof,

4It only suffices to add a constant C to every element of the vector to move the numbers to the interval [0, emax].
After computing the solution, we may move the solution back to the original space.
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it only suffices to show that |a?kj − a?k
′

j′ | ≤ emax. This follows from the fact that the value of all
indices of a are in range [0, emax] and that ai1 ≤ ai2 ≤ ai3 ≤ . . . ≤ aik+k′ . �

What Lemma B.2 implies is that when computing a?k = a?dk/2e ?a?bk/2c, it only suffices to take

into account (i, j) pairs such that |a?dk/2ei −a?bk/2cj | ≤ emax. This observation enables us to compute

a?k = a?dk/2e ? a?bk/2c in time Õ(emax|a?k|) via the prediction technique. Suppose a is an integer
vector with values in range [0, emax]. In addition to this, assume that â = a?dk/2e and ā = a?bk/2c.
We propose an algorithm that receives â and ā as input and computes a?k = â ? ā as output. The
running time of our algorithm is Õ(emax|a?k|).

We define two integer vectors b̂ and b̄ where b̂i = maxj≤i âj . Similarly, b̄i = maxj≤i āj . By

definition, both vectors b̂ and b̄ are non-decreasing. Now, for every index i of b̂ we find an interval
[xi, yi] of b̄ such that b̂i− 2emax ≤ b̄j ≤ b̂i + 2emax for any j within [xi, yi]. Since both vectors b̂ and
b̄ are non-decreasing, computing each interval takes time O(log n) via binary search. Finally, we
provide these intervals to the prediction technique and compute a?k = â ? ā in time Õ(emax|a?k|).
In Lemma B.3, we prove that the intervals adhere to the conditions of the prediction technique and
thus Algorithm 3 correctly computes a?k from â and ā in time Õ(emax|a?k|).

Algorithm 3: FastPower(â, ā, emax)

Data: Two vectors â and ā s.t. â = a?dk/2e and ā = a?bk/2c for some a and k.
Result: â ? ā

1 Let b̂, b̄ be two vectors of size |a?dk/2e| and |a?bk/2c| respectively.;

2 b̂0 ← â1;
3 b̄0 ← ā1;
4 for i ∈ [1, |â| − 1] do

5 b̂i ← max{b̂i−1, âi};
6 for i ∈ [1, |ā| − 1] do
7 b̄i ← max{b̄i−1, āi};
8 for i ∈ [1, |a?k| − 1] do
9 xi ← the smallest j such that b̄j ≥ b̄i − 2emax;

10 yi ← the largest j such that b̄j ≤ b̄i + 2emax;

11 c = PolynomialMultiplicationViaPredictionMethod(â, ā, 5emax, xi’s, yi
′s);

12 Return c;

Lemma B.3. Let a be an integer vector with values in range [0, emax]. For some integer k > 0,
let â = a?dk/2e and ā = a?bk/2c. Given â and ā as input, Algorithm 3 computes a?k = â ? ā in time
Õ(emax|a?dke|).

Proof. The correctness of Algorithm 3 boils down to whether intervals [xi, yi] provided for the
prediction technique meet the conditions of Theorem 3.4. Before we prove that the conditions are
met, we note that by Lemma B.1, the values of b̂ and b̄ are at most emax more than that of â and
ā. Moreover, by definition, the vectors b̂ and b̄ are non-decreasing and lower bounded by the values
of â and ā.

First condition: The first condition is that for every 0 ≤ i < |a?dk/2e| and xi ≤ j ≤ yi we have
âi + āj ≥ (â ? ā)i+j − O(emax). In what follows, we show that in fact âi + āj ≥ (â ? ā)i+j − 5emax

holds for such i’s and j’s. Due to Lemma B.2, for every such i and j, there exist an i′ and a j′ such
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that âi′ + āj′ = (â ? ā)i′+j′ , i
′ + j′ = i+ j, and |âi′ − āj′ | ≤ emax. Therefore,

(â ? ā)i+j = (â ? ā)i′+j′

= âi′ + āj′

≤ 2 min{âi′ + āj′}+ emax

≤ 2 min{b̂i′ + b̄j′}+ emax.

In addition to this, we know that i+ j = i′ + j′ and thus either i′ ≤ i or j′ ≤ j. In any case, since
both b̂ and b̄ are non-decreasing, max{b̂i, b̄j} ≥ min{b̂i′ , b̂j′} and therefore,

(â ? ā)i+j ≤ 2 min{b̂i′ , b̄j′}+ emax

≤ 2 max{b̂i, b̄j}+ emax.

Due to Algorithm 3, max{b̂i, b̂j} −min{b̂i, b̄j} ≤ 2emax and hence

(â ? ā)i+j ≤ 2 max{b̂i, b̄j}+ emax

≤ b̂i + b̄j + 3emax

≤ âi + āj + 5emax.

Second condition: The second condition is that for every 0 ≤ i < |a?dk/2e|, there exists a
0 ≤ j ≤ i such that âj + āi−j = (â ? ā)i and that xj ≤ i − j ≤ yj . We prove this condition via
Lemma B.2. Lemma B.2 states that for every |a?dk/2e| there exists a 0 ≤ j ≤ i such that satisfies
âj + āi−j = (â ? ā)i and also |âj− āi−j | ≤ emax. Since the values of b̄, b̂ differ from â, b̂ by an additive

factor of at most emax, the latter inequality implies |b̂j − b̄i−j | ≤ 2emax. Due to Algorithm 3, if

|b̂j − b̄i−j | ≤ 2emax then i− j lies in the interval [xj , yj ].
Third condition: The third condition is regarding the monotonicity of xi’s and yi’s. This

condition directly follows from the fact that both vectors b̂ and b̄ are non-decreasing and as such,
the computed intervals are also non-decreasing.

Apart from an invocation of Algorithm 1, the rest of the operations in Algorithm 3 run in time
Õ(n) and therefore the total running time of Algorithm 3 is Õ(emax|a?dke|). �

Based on Lemma B.3, for an integer vector with values in range [0, emax], we can compute a?k

via O(log k) ? operations, each of which takes time Õ(emax|a?dke|). Moreover, we always need to
make at most O(log k) = Õ(1) ? operations in order to compute a?k.

Theorem B.4. Let a be an integer vector with values in range [0, emax]. For any integer k ≥ 1,
one can compute a?k in time Õ(emax|a?dke|).

Proof. The proof follows from the correctness of Algorithm 3 and the fact that it runs in time
Õ(emax|a?dke|). �

Theorem B.4 provides a strong tool for solving many combinatorial problems including the un-
bounded knapsack problem. In order to compute the solution of the unbounded knapsack problem,
it only suffices to construct a vector a of size t wherein ai specifies the value of the heaviest items
with size i. a itself specifies the solution of the unbounded knapsack problem if we are only allowed
to put one item in the bag. Similarly, a?2 denotes the solution of the unbounded knapsack problem
when we can put up to two items in the knapsack. More generally, for every 1 ≤ k, a?k denotes
the solution of the unbounded knapsack problem subject to using at most k items. This way,
a?t formulates the solution of the unbounded knapsack problem. Note that in order to solve the
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knapsack problem, we only need to compute a prefix of size t + 1 of a?t. This makes the running
time of every ? operation Õ(emaxt) and thus computing the first t + 1 elements of a?t takes time
Õ(emaxt).

Theorem B.5 (a corollary of Theorem B.4). The unbounded knapsack problem can be solved in
time Õ(vmaxt+ n) when the item values are integers in range [0, vmax].
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C Knapsack for Items with Small Sizes

We also consider the case where the size of the items is bounded by smax. Note that in such a
scenario, the values of the items can be large real values, however, each item has an integer size in
range [1, smax]. We propose a randomized algorithm that solves the knapsack problem w.h.p. in
time Õ(smax(n+ t)) in this case. Our algorithm is as follows: we randomly put the items in t/smax

different buckets. Using the classic quadratic time knapsack algorithm we solve the problem for
each bucket up to a knapsack size Õ(smax). Next, we merge the solutions in log(t/smax) rounds.
In the first round, we merge the solutions for buckets 1 and 2, buckets 3 and 4, and so on. This
results in t/2smax different solutions for every pair of buckets at the end of the first round. In the
second round, we do the same except that this time the number of buckets is divided by 2. After
log(t/smax) rounds, we only have a single solution and based on that, we determine the maximum
value of the solution with a size bounded by t and report that value.

If we use the classic (max,+)-convolution for merging the solutions of two buckets, it takes
time O(t2) for merging two solutions and yields a slow algorithm. The main idea to improve the
running time of the algorithm is to merge the solutions via a faster algorithm. We explain the idea
by stating a randomized argument. Throughout this paper, every time we use the term w.h.p. we
mean with a probability of at least 1− n−10.
Lemma C.1. Let (s1, v1), (s2, v2), . . . , (sn, vn) be n items with sizes in range [1, smax]. Let the
total size of the items be S. For some 0 < p < 1/2, we randomly select each item of this set
with probability p and denote their total size by S′. If smax ≤ 2pS then for some C = Õ(1)
|pS − S′| ≤ C

√
smaxpS holds w.h.p. (with probability at least 1− n−10).

Proof. This lemma follows from the Bernstein’s inequality [23]. Bernstein’s inequality states
that if x1, x2, . . . , xn are n independent random variables strictly bounded by the intervals [ai, bi]
and x̄ =

∑
xi then we have:

Pr[|x̄− E[x̄]| > y] ≤ 2 exp(− y2/2

V + Zy/3
)

where V =
∑

E[(xi − E[xi])
2] and Z = max{bi − ai}.

To prove the lemma, we use Bernstein’s inequality in the following way: for every item we put
a variable xi which identifies whether item (si, vi) is selected in our set. If so, we set xi = si,
otherwise we set xi = 0. As such, the value of every variable xi is in range [0, si] and thus ai = 0
and bi = si for all 1 ≤ i ≤ n. This way we have

E[x̄] =
∑

E[xi] =
∑

psi = p(
∑

si) = pS.

Moreover, si ≤ smax holds for all i and for each xi we have E[(xi − E[xi])
2] = p(1 − p)s2i ≤

p(1− p)smaxsi. Thus,

V =
∑

E[(xi − E[xi])
2] ≤

∑
p(1− p)smaxsi = (

∑
si)p(1− p)smax = p(1− p)smaxS.

By replacing E[x̄] by pS, Z by smax, and V by p(1− p)smaxS we get

Pr[|x̄− pS]| > y] ≤ 2 exp(− y2/2

p(1− p)smaxS + smaxy/3
).

We set C = 40 log n and y = C
√

smaxpS to bound the probability that |
∑
xi − pS| > C

√
smaxpS

happens. Thus we obtain

Pr[|x̄− pS]| > C
√

smaxpS] ≤ 2 exp(− C2smaxpS/2

p(1− p)smaxS + Csmax
√

smaxpS/3
).
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Since 1− p ≤ 1 we have
C2smaxpS/2

p(1− p)smaxS
=

C2/2

(1− p)
≥ C2/2. (1)

Moreover, by the assumption of the lemma p ≤ 1/2 holds. In addition to this, smax ≤ 2pS and
therefore

C2smaxpS/2

Csmax
√

smaxpS/3
=

CpS/2√
smaxpS/3

=
C
√
pS/2

√
smax/3

= 3
C
√
pS/2

√
smax

≥ 3
C
√
pS/2√
2pS

= 3
C/2√

2
≥ 3C/(2

√
2). (2)

It follows from Inequalities (1) and (2) that

C2smaxpS/2

p(1− p)smaxS + Csmax
√

smaxpS/3
=

C2smaxpS/2[
p(1− p)smaxS

]
+
[
Csmax

√
smaxpS/3

]
≥ min{ C2smaxpS/2

p(1− p)smaxS
,

C2smaxpS/2

Csmax
√

smaxpS/3
}/2

≥ min{C2/2,
3C

2
√

2
} ≥ 3C

4
√

2

≥ C/2

= 20 log n.

This implies that exp(− C2smaxpS/2

p(1−p)smaxS+Csmax
√
smaxpS/3

) ≤ exp(−20 log n) ≤ n−10 and thus |pS − S′| ≤
C
√

smaxpS holds w.h.p. �

In our analysis, we fix an arbitrary optimal solution of the problem and state our observations
based on this solution. Since the sizes of the items are bounded by smax, then either our solution
uses all items and has a total size of

∑
si (if

∑
si is not larger than t) or leaves some of the items

outside the knapsack and therefore has a size in range [t − smax + 1, t]. One can verify in O(n) if
the total size of the items is bounded by t and compute the solution in this case. Therefore, from
now on, we assume that the total size of the items is at least t and thus the solution size is in
[t− smax + 1, t].

Now, if we randomly distribute the items into t/smax buckets then the expected size of the
solution in each bucket is O(smax) and thus we expect the size of the solution in each bucket to be
in range [0, Õ(smax)] w.h.p. due to Lemma C.1. Therefore, it suffices to compute the solution for
each bucket up to a size of Õ(smax). Next, we use Lemma C.1 to merge the solutions in faster than
quadratic time. Every time we plan to merge the solutions of two sets of items S1 and S2, we expect
the size of the solutions in these two sets to be in ranges [t|S1|/n − Õ(

√
tsmax|S1|/n), t|S1|/n +

Õ(
√
tsmax|S1|/n)] and [t|S2|/n − Õ(

√
tsmax|S2|/n), t|S2|/n + Õ(

√
tsmax|S2|/n)] w.h.p. Therefore,

if we only consider the values within these ranges, we can merge the solutions correctly w.h.p.

and thus one can compute the solution for S1 ∪ S2 w.h.p. in time Õ(
√
tsmax(|S1|+ |S2|)/n

2
) =
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Õ(tsmax(|S1|+ |S2|)/n). This enables us to compute the solution w.h.p. in time Õ(smax(n+ t)).

Algorithm 4: KnapsackForSmallSizes

Data: Knapsack size t and n items (si, vi) where 1 ≤ si ≤ smax for all items.
Result: Solution for knapsack size t

1 Randomly distribute the items into t/smax buckets;
2 for j ∈ [t/smax] do
3 x1,j = solution of the problem for bucket i up to size (C + 2)smax;

4 for i ∈ [2, dlog(t/smax)e] do
5 for j ∈ dt/smax/2

ie do
6 Combine the solutions of xi−1,2j−1 and xi−1,2j into xi,j (based on Lemma C.1 );

7 Return maxxdlog(t/smax)e,1;

Theorem C.2. There exists a randomized algorithm that correctly computes the solution of the
knapsack problem in time Õ(smax(n+ t)) w.h.p., if the item sizes are integers in range [1, smax].

Proof. We assume w.l.o.g. that the total size of the items is at least t and thus the solution size is
in range [t− smax + 1, t]. As outlined earlier, we randomly put the items into t/smax buckets. Based
on Lemma C.1, the expected size of the solution in each bucket is in range [smax−1, smax]. Therefore,
by Lemma C.1 w.h.p. the size of the solution in every bucket is at most smax + Õ(smax) = Õ(smax).
Therefore, for each bucket with ni items we can compute the solution up to size Õ(smax) in time
Õ(smaxni). Since

∑
ni = n, the total running time of this step is Õ(smaxn).

We merge the solutions in log(t/smax) rounds. In every round i, we make t/smax/2
i merges

each corresponding to the solutions of 2i buckets. By Lemma C.1, the range of the solution size
in every merge is [smax2i − Õ(

√
smax

22i), smax2i + Õ(
√

smax
22i)] w.h.p. Thus, every merge takes

time smax
22i. Moreover, in every round i the number of merges is t/smax/2

i. Therefore, the total
running time of each phase is Õ(smaxt) and thus the algorithm runs in time Õ(smax(n + t)). In
order to show our solution is correct with probability at least 1− n−10, we argue that we make at
most n merges and therefore the total error of our solution is at most nn−10 = n−9. Thus, if we
run Algorithm 4 twice and output the better of the generated answers, our error is bounded by
2(n−9)2 = n−18/2 ≤ n−10 and thus the output is correct with probability at least 1− n−10. �

As a corollary of Theorem C.2, we can also solve the unbounded knapsack problem in time
Õ(smax(n+ t)) if the sizes of the items are bounded by smax.

Corollary C.3 (of Theorem C.2). There exists a randomized Õ(smax(n + t)) time algorithm that
solves the unbounded knapsack problem w.h.p. when the sizes are bounded by smax.

Proof. The crux of the argument is that in an instance of the unbounded knapsack problem
if the sizes of two items are equal, we never use the item with the smaller value in our solution.
Thus, this leaves us with smax different items. We also know that we use each item of size si at
most bt/sic times and thus if we copy the most profitable item of each size si, bt/sic times, this
gives us an instance of the 0/1 knapsack problem with O(t log smax) items. Using the algorithm of
Theorem C.2 we can solve this problem in time Õ(smaxt). Since the reduction takes time O(n) the
total running time is Õ(smax(n+ t)). �

Using the same idea, one can also solve the problem in time Õ((n+ t)smax) when each item has
a given multiplicity.
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D Strongly Polynomial Time Algorithms for Knapsack with Mul-
tiplicities

In this section, we study the knapsack problem where items have multiplicities. We assume
throughout this section that the sizes of the items are bounded by smax. More precisely, for
every item (si, vi), mi denotes the number of copies of this item that can appear in any solution.
We show that when all the sizes are integers bounded by smax, one can solve the problem in time
Õ(nsmax

2 min{n, smax}). Notice that this running time is independent of t and thus our algorithm
runs in strongly polynomial time. This result improves upon the O(n3smax

2) time algorithm of [22].
We begin, as a warm-up, by considering the case where mi =∞ for all items. We show that in

this case, theO(n2smax
2) time algorithm of [22] can be improved to an Õ(nsmax+smax

2 min{n, smax})
time algorithm. Before we explain our algorithm, we state a mathematical lemma that will be later
used in our proofs.

Lemma D.1. Let S be a subset of items with integer sizes. If |S| ≥ k then there exists a non-empty
subset of S whose total size is divisible by k.

Proof. Select k items of S and give them an arbitrary ordering. Let si be the total size of the
first i items in this order. Therefore, 0 = s0 < s1 < s2 < . . . < sk holds. By pigeonhole principal,
from set {s0, s1, . . . , sk} two numbers have the same remainder when divided by k. Therefore, for
some i < j we have si Mod k = sj Mod k. This means that the total size of the items in positions
i+ 1 to j is divisible by k. �

When all multiplicities are infinity, our algorithm is as follows: define H := arg max vi/si to be
the index of an item with the highest ratio of vi/si or in other words, the most profitable item. We
claim that there always exists an optimal solution for the knapsack problem in which the total size
of all items except (sH, vH) is bounded by smax

2.

Lemma D.2. Let I be an instance of the knapsack problem where the multiplicity of every item is
equal to infinity and let (sH, vH) be an item with the highest ratio of vi/si. There exists an optimal
solution for I in which the number of items except (sH, vH) is smaller than sH.

Proof. We begin with an arbitrary optimal solution and modify the solution until the condition
of the lemma is met. Due to Lemma D.1, every set S with at least sH items contains a subset
whose total size is divisible by sH. Therefore, until the number of items other than (sH, vH) drops
below sH, we can always find a subset of such items whose total size is divisible by sH. Next, we
replace this subset with multiple copies of (sH, vH) with the same total size. Since vH/sH is the
highest ratio over all items, the objective value of the solution doesn’t hurt, and thus it remains
optimal. �

Since si ≤ smax holds for all items, Lemma D.2 implies that in such a solution, the total size of
all items except (sH, vH) is bounded by smax

2. This implies that at least max{0, b(t− smax
2)/sHc}

copies of item (sH, vH) appear in an optimal solution. Thus, one can put these items into the
knapsack and solve the problem for the remaining space of the knapsack. Let the remaining
space be t′ which is bounded by smax

2 + smax. Therefore, the classic O(nt′) time algorithm for
knapsack finds the solution in time O(nsmax

2). Also, by Theorem C.2, one can solve the problem
in time Õ((n + t′)smax) = Õ(nsmax + smax

3). Thus, the better of two algorithms runs in time
Õ(nsmax + smax

2 min{n, smax}). This procedure is shown in Algorithm 5.

Theorem D.3. When si ∈ [smax] and mi = ∞ hold for every item, Algorithm 5 computes the
solution of the knapsack problem in time Õ(nsmax + smax

2 min{n, smax}).
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Algorithm 5: KnapsackWithInfiniteMultiplicities

Data: A knapsack size t and n items with sizes and values (si, vi). mi =∞ and si ≤ smax

hold for all 1 ≤ i ≤ n
Result: The solution of the knapsack problem for knapsack size t

1 H← arg max vi/si;
2 cnt← max{0, b(t− smax

2)/sH}c;
3 t′ ← t− cnt · sH;
4 if n ≤ smax then
5 Report cnt · vH + ClassicKnapsack(t′, n, {(s1, t1), (s2, t2), . . . , (sn, tn)}, {m1,m2, . . . ,mn});
6 else
7 Report

cnt · vH + KnapsackForSmallSizes(t′, n, {(s1, t1), (s2, t2), . . . , (sn, tn)}, {m1,m2, . . . ,mn});

Proof. The main ingredient of this proof is Lemma D.2. According to Lemma D.2, there exists a
solution in which apart from (sH, vH) type items, the total size of the remaining items is bounded by
smax

2. Therefore, we are guaranteed that at least cnt copies of item (sH, vH) appear in an optimal
solution of the problem. Thus, the remaining space of the knapsack (t′) is at most smax

2 + smax

and therefore Algorithm 5 solves the problem in time Õ(nsmax + smax
2 min{n, smax}). �

Next, we present our algorithm for the general case where every multiplicity mi ≥ 1 is a given
integer number. Our solution for this case runs in time Õ(nsmax

2 min{n, smax}). We assume w.l.o.g.
that t ≥ smax

2, otherwise the better of the classic knapsack algorithm and our limited size knapsack
algorithm solves the problem in time Õ(nsmax+smax

2 min{n, smax}). In addition to this, we assume
that the items are sorted in decreasing order of vi/si, that is

v1/s1 ≥ v2/s2 ≥ . . . ≥ vn/sn.

We define t′ = t− smax
2 to be a smaller knapsack size which is less than t by an additive factor of

smax
2. We construct a pseudo solution for the smaller knapsack problem, by putting the items one

by one into the smaller knapsack (of size t′) greedily. We stop when the next item does not fit into
the knapsack. Let bi be the number of copies of item (si, vi) in our pseudo solution for the smaller
knapsack problem. In what follows, we show that there exists an optimal solution for the original
knapsack problem such that if bi ≥ smax holds for some item (si, vi), then at least bi − smax copies
of (si, vi) appear in this solution.

Lemma D.4. Let bi denote the number of copies of item (si, vi) in our pseudo solution for the
smaller knapsack problem. There exists an optimal solution for the original knapsack problem that
contains at least bi − smax copies of each item (si, ti) such that bi ≥ smax.

Proof. To show this lemma, we start with an optimal solution and modify it step by step to
make sure the condition of the lemma is met. We denote the number of copies of item (si, vi) in our
solution by ai. In every step, we find the smallest index i such that ai < bi− smax. Notice that due
to the greedy nature of our algorithm for constructing the pseudo solution and the fact that bi > 0
then bj = mj for every j < i. Hence, aj ≤ mj = bj holds for all j ≤ i. Since at least one copy of
item (si, vi) is not used in the optimal solution, then the unused space in the optimal solution is
smaller than si. Recall that the total size of the pseudo solution is bounded by t′ = t− smax

2 and
since aj ≤ bj for all j ≤ i, then the first i items contribute to at most t− smax

2− smaxsi space units
of the solution. Moreover, as we discussed above, the total size of the solution is at least t − smax
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and thus the rest of the items have a size of at least smax
2 in our optimal solution. Therefore we

have
n∑

j=i+1

ajsj ≥ smax
2

and since sj ≤ smax holds, we have
∑n

j=i+1 aj ≥ smax ≥ si. Based on Lemma D.1 there exists a
subset of these items whose total size is divisible by si and thus we can replace them with enough
(and at most smax) copies of item (si, vi) without hurting the solution. At the end of this step ai
increases and all aj for j < i remain intact. Therefore after at most

∑
bi steps, our solution has

the desired property. �

What Lemma D.4 suggests is that although our pseudo solution may be far from the optimal, it
gives us important information about the optimal solution of our problem. If our pseudo solution
uses all copies of items, it means that all items fit into the knapsack and therefore the solution is
trivial. Otherwise, we know that the total size of the pseudo solution is at least t′−smax = t−smax

2−
smax. Based on Lemma D.4, for any item with bi ≥ smax we know that at least bi − smax copies of
this item appear in an optimal solution of our problem. Therefore, we can decrease the multiplicity
of such items by bi− smax and decrease the knapsack size by (bi− smax)si. We argue that after such
modifications, the remaining size of the knapsack is at most smax + smax

2 +nsmax
2. Recall that the

total size of the pseudo solution is at least t− smax
2− smax and therefore

∑
bisi ≥ t− smax

2− smax.
This implies that ∑

max{0, bi − smax}si ≥
∑

(bi − smax)si

=
∑

bisi −
∑

smaxsi

≥ [t− smax
2 − smax]−

∑
smaxsi

≥ [t− smax
2 − smax]−

∑
smax

2

= [t− smax
2 − smax]− nsmax

2

= t− smax − (n+ 1)smax
2

Therefore, after the above modifications, the remaining size of the knapsack is at most smax + (n+
1)smax

2. Thus, we can solve the problem in time Õ(nsmax
3) using Lemma C.2 and solve the problem

in time Õ(n2smax
2) using the classic knapsack algorithm. This procedure is explained in details in

Algorithm 6.

Theorem D.5. Algorithm 6 solves the knapsack problem in time Õ(nsmax
2 min{n, smax}) when the

sizes of the items are integers in range [1, smax] and each item has a given integer multiplicity.

Proof. The proof is based on Lemma D.4. After determining the values of vector b′, we know
that for each item (si, ti) at least bi − smax copies appear in the solution. Thus, we can remove
the space required by these items and reduce the knapsack size. As we discussed before, after all
these modifications, the new knapsack size (t′′) is bounded by smax + (n + 1)smax

2 and thus the
better of the classic knapsack algorithm and the algorithm of Section C solve the problem in time
Õ(nsmax

2 min{n, smax}). �
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Algorithm 6: KnapsackWithGivenMultiplicities

Data: A knapsack size t and n items with sizes and values (si, vi). n multiplicities
m1,m2, . . . ,mn. si ≤ smax holds for all 1 ≤ i ≤ n

Result: The solution of the knapsack problem for knapsack size t
1 t′ ← max{0, t− smax

2};
2 for i ∈ [1, n] do
3 bi ← min{mi, bt′/sic};
4 t′ ← t′ − bisi;
5 if bi 6= mi then
6 break;

7 t′′ ← t;
8 surplus← 0;
9 for i ∈ [1, n] do

10 t′′ ← t′′ −max{0, bi − smax}si;
11 m′i ← mi −max{0, bi − smax} ;
12 surplus← surplus + max{0, bi − smax}vi;
13 if n ≤ smax then
14 Report surplus + ClassicKnapsack(t′′, n, {(s1, t1), (s2, t2), . . . , (sn, tn)}, {m′1,m′2, . . . ,m′n});
15 else
16 Report

surplus + KnapsackForSmallSizes(t′′, n, {(s1, t1), (s2, t2), . . . , (sn, tn)}, {m′1,m′2, . . . ,m′n});

E Related Convolution Problems

In Sections G and F we discuss other convolution type problems that are similar to knapsack. We
mentioned in the introduction that several problems seem to be closely related to the knapsack and
convolution problems. We define and mention some previous results for some of those problems
here. The tree sparsity problem asks for a maximum-value subtree of size k from a given node-
valued tree. The best-known algorithm for the problem runs in O(kn) time, which is quadratic
for k = Θ(n). Backurs et al. [1] show that it is unlikely to obtain a strongly subquadratic-time
algorithm for this problem, since it implies the same for the (min,+) convolution problem. They
provide the first single-criterion (1+ε)-approximation for tree sparsity that runs in near-linear time,
and works on arbitrary trees. Given a set of integers and a target, the subset sum problem looks
for a subset whose sum matches the target. To find all the realizable integers up to u takes time
Õ(min{

√
nu, u4/3, σ}), where σ is the sum of the given input integers [16], improving upon the

simple O(nu) dynamic-programming solution [2]. Finding out whether a specific t is realizable may
be done in Õ(n+t) randomized time, matching certain conditional lower bounds [4]. The least-value
sequence problem is studied in Künnemann et al. [17]: given a sequence of n items and a (perhaps
succinctly represented) not necessarily positive value function for every pair, find a subsequence
that minimizes the sum of values of adjacent pairs. Several problems such as longest chain of nested
boxes, vector domination, and a coin change problem fit in this category and are considered. For
each of these, the authors identify “core” problems, which help to either demonstrate hardness or
design fast algorithms. The fastest algorithms for language edit distance is based on computing the
(min,+) product of two n × n matrices, which also solves all pairs shortest paths. Bringmann et
al. [5] show that the matrix product can be computed in subcubic time if one matrix has bounded
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differences in either rows or columns.
While minimum convolution5 admits a near linear-time (1 + ε)-approximation [1, 7], we do not

know of a strongly subquadratic-time exact algorithm for it. The best-known algorithm runs in
time O(n2(log log n)3/ log2 n) [3]. Some special cases have faster algorithms, though: O(n) time for
convex sequences, and O(n log n) time for randomly permuted sequences [6, 18]. Moreover additive
combinatorics allows us to solve the convolution problem for increasing integers bounded by O(n)
in randomized time O(n1.859) and deterministic O(n1.864) [8].

Cygan et al. [11] study minimum convolution as a hardness assumption, and identify several
problems that are as hard. First of all, minimum convolution is known to reduce to either three-sum
or all pairs shortest paths problem, though no reduction in the other direction is known, and the
relation of the latter two is not known. (The three-sum problem asks whether three elements of a
given set of n numbers sum to zero.) Despite the recent progress on the subset sum problem, which
is a special case of the 0/1 knapsack problem, the latter is shown to be equivalent to minimum
convolution. (The former reduces to (∨,∧) convolution that can be solved via FFT.) A similar
reduction exists for the unbounded knapsack problem.

5It is also called (min,+) convolution, min-sum convolution, inf-convolution, infimal convolution or the epigraphical
sum in the literature.
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F Tree Separability

0/1 knapsack, unbounded knapsack, and tree sparsity along with a few other combinatorial opti-
mization problems have been shown to be computationally equivalent with respect to subquadratic
algorithms [11]. In other words, a subquadratic algorithm for any problem in this list yields a
subquadratic algorithm for the rest of the problems. In this section, we introduce the tree sepa-
rability problem and show that this problem is indeed computationally equivalent to the rest of
the problems of the list. Next, in Section F.2, we show that in some cases, a bounded weight
tree separability problem can be solved in better than subquadratic time. This result in nature is
similar to the algorithms we provide for knapsack problems.

In the tree separability problem, we are given a tree T with n nodes and n − 1 edges. Every
edge e = (i, j) is associated with a weight we. The goal of this problem is to partition the vertices
of T into two (not necessarily connected) partitions of size m and n −m in a way that the total
weight of the crossing edges is minimized. A special case of the problem where |m− (n−m)| ≤ 1
is known as tree bisection.

F.1 Equivalence with (max,+) Convolution

To show a subquadratic equivalence, we first present an indirect reduction from (max,+) convo-
lution to tree separability. We use the MaxCov-UpperBound as an intermediary problem in our
reduction. Cygan et al. [11] show that any subquadratic algorithm for MaxCov-UpperBound yields
a subquadratic solution for (max,+) convolution.

Definition F.1. In the MaxCov-UpperBound problem, we are given two vectors a and b of size n
and a vector c of size 2n−1. The goal is to find out whether there exists an i such that (a?b)i > ci.

Lemma F.2 (proven in [11]). Any subquadratic solution for MaxCov-UpperBound yields a sub-
quadratic solution for the (max,+) convolution.

The main idea of our reduction is as follows: Given three vectors a, b, and c with sizes n, n,
and 2n − 1 one can construct a tree consisted of three paths joining at a vertex r. We show that
based on the solution of the tree separability on this tree, one can determine if (a?b)i ≥ ci for some
0 ≤ i < 2n− 1.

Lemma F.3. Any subquadratic algorithm for tree separability results in a subquadratic algorithm
for the (max,+) convolution.

Proof. As we mentioned earlier, we prove this reduction through MaxCov-UpperBound. Suppose
we are given two vectors a and b of size n and a vector c of size 2n− 1 and are asked if (a ? b)i > ci
for some 0 ≤ i < |c|. We answer this question by constructing a tree of size 8n as follows: Let
M = 10 max{1, |a0|, |a1|, . . . , |an−1|, |b0|, |b1|, . . . , |bn−1|} be a large enough number. The root of the
tree is a vertex r and three paths are connected to vertex r. The vertices of each path correspond to
the elements of one vector. Thus, we denote the vertices of the paths by a′i, b

′
i, and c′i respectively.

For every c′i we set the weight of the edge between c′i and c′i−1 (or r in case of i = 0) equal to
M + c2n−2−i. Similar to this, for every 0 ≤ i < n, we set the weight of the edge between a′i+n and
a′i+n−1 equal to M − ai and the weight of the edge between b′i+n and b′i+n−1 equal to M − bi. The
rest of the edges have weight ∞. This construction is illustrated in Figure 2. Our claim is that
for m = 4n − 1 the solution of the tree separability problem is at least 3M if and only if a ? b is
bounded by c.
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Figure 2: Dashed edges have weight ∞ while the weight of the solid edges is based on the value of
the vectors a, b, and c.

We first prove that if for some ai and bj we have ai + bj = (a ? b)i+j > ci+j then the solution of
the tree separability problem for m = 4n− 1 is smaller than 3M . To this end, we put the following
vertices in one partition and the rest of the vertices in the second partition:

{r, a′0, a1, . . . , a′n+i−1, b′0, b1, . . . , b′n+j−1, c′0, c′1, . . . , c′2n−i−j−3}.

Notice that the above list contains exactly 4n − 1 vertices. Moreover, the only crossing edges of
this solution are the ones connected to a′n+i, b

′
n+j , and c′2n−i−j−2 with weights M −ai, M − bj , and

M + ci+j . Since ai + bj > ci+j we have M − ai +M − bj +M + ci+j < 3M and thus the solution
of the tree separability problem is smaller than 3M .

Finally, we show that if ai + bj ≥ ci+j holds for all i and j, then the solution of the tree
separability problem is at least 3M . Notice that since M is large enough, in order for a solution to
have a weight smaller than 3M it has to meet the following constraints:

• The solution should not contain an edge with weight ∞.

• The number of crossing edges between the partitions should be at most 3.

In any solution that meets the above constraints, the partition with size 4n− 1 contains vertex r.
Moreover, none of the crossing edges in parts a′ and b′ have weight ∞ and thus the crossing edges
correspond to two vertices a′n+i and b′n+j with 0 ≤ i, j < n and therefore their weights are ai and
bj . Since the size of the partition is 4n−1, the third crossing edge has a weight of ci+j . Recall that
we assume ci+j ≥ ai + bj and therefore M − ai +M − bj +M + ci+j ≥ 3M .

�

We also show in Appendix M that a T (n) time algorithm for computing the (max,+) convolution
of two vectors yields an Õ(T (n)) time algorithm for solving tree separability. The proof is very
similar to the works of Cygan et al. [11] and Backurs et al. [1]. If the height of the tree is small,

30



the classic dynamic program yields a running time of T (n). We use the spine decomposition of [21]
to deal with cases where the height of the tree is large.

Lemma F.4. Any T (n) time algorithm for solving (max,+) convolution yields an Õ(T (n)) time
algorithm for tree separability.

Lemmas F.3 and F.4 imply that (max,+) convolution and tree separability are computationally
equivalent.

Theorem F.5 (A corollary of Lemmas F.3 and F.4). (max,+) convolution and tree separability
are computationally equivalent with respect to subquadratic algorithms.

F.2 Fast Algorithm for Special Cases

We show that when the maximum degree of the tree and the weights of the edges are bounded by
dmax and wmax, one can solve the problem in time Õ(dmaxwmaxn). Note that our algorithm only
works when the edge weights are integers. In particular, when both wmax and dmax are O(1) our
algorithm runs in (almost) linear time.

Our main observation is the following: for any 1 ≤ m < n, there exists a partitioning of a given
tree T into two partitions of sizes m and n−m such that the number of crossing edges is bounded
by 2dmax log n.

Lemma F.6. Let T be a tree of size n and 1 ≤ m < n be an integer number. There exists a
partitioning of T into two partitions of sizes m and n−m with at most 2dmax log n crossing edges
where dmax is the maximum degree of a vertex in T .

Proof. It is a well-known fact that every tree of size n has a vertex v such that if we remove v
from the tree, the size of each connected component of the tree is bounded by (2/3)n [24]. Based
on this observation, we inductively construct a solution with no more than 2dmax log n crossing
edges for any tree with n vertices and a given partition size m. The base case is n ≤ 2 for which
the lemma holds trivially. Now, for a given tree T of size n, we find its center v with the above
property. Next, we remove v from the tree to obtain dv connected components T1, T2, . . . , Tdv . To
construct a solution, we first put vertex v in the partition that is to be of size m. We then continue
growing this partition by adding the subtrees to it one by one. We stop when adding any subtree to
the solution increases the size of the partition to more than m. Let m′ be the size of the partition
and Ti be the first subtree that cannot be entirely added to the solution. If m′ = m our solution is
valid, otherwise we recursively partition Ti into two partitions of sizes m−m′ and |Ti| − (m−m′)
and update the solution by adding the m−m′ part to it. Note that we have at most dmax crossing
edges for vertex v and also based on the induction hypothesis, the number of crossing edges in
partitions of Ti is at most 2dmax log |Ti|. In addition to this, since v is a center of the tree, we have
|Ti| ≤ n2/3 and therefore 2dmax log |Ti| ≤ (2 log n − 1)dmax. Thus, the total number of crossing
edges in our solution is bounded by 2dmax log n. �

It follows from Lemma F.6 that when the maximum degree of a tree is bounded by dmax and the
maximum weight of the edges is bounded by wmax then the solution of the tree separability problem
is bounded by 2dmaxwmax log n. Therefore, the values of the solutions for every subproblem of the
tree separability problem are bounded by 2dmaxwmax log n. Thus, every time we wish to compute
the convolution of two vectors a and b corresponding to the solutions of the subproblems, the
(max,+) convolution can be computed in time Õ(dmaxwmax(|a|+ |b|)) (Lemma H.1). Thus, based
on Lemma F.4, we can compute the solution of the tree separability problem in time Õ(dmaxwmaxn).
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Theorem F.7 (A corollary of Lemmas F.6 and F.4). Given a tree T with n nodes whose maximum
degree is bounded by dmax. If the weights of the edges are integers bounded by wmax, one can compute
the solution of the tree separability problem for T in time Õ(dmaxwmaxn).
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G 0/1 Tree Sparsity

We show in Sections 3, A, and F that convolution, knapsack, and tree separability problems can be
solved in almost linear time in special cases. One of the important problems that lies in the same
computational category with these problems is the tree sparsity problem. Therefore, an important
question that remains open is whether an almost linear time algorithm can solve the tree sparsity
problem when the weights of the vertices are small integers. In particular, is it possible to solve the
0/1 tree sparsity problem (in which the weight of every vertex is either 0 or 1) in Õ(n) time? We
show in this section that tree sparsity is the hardest problem of this category when it comes to small
weights. More precisely, we show that an Õ(n) time algorithm for 0/1 tree sparsity immediately
implies linear time solutions for the rest of the problems when the input values are small. We
assume that the goal of the tree sparsity problem is to find for every i what is the weight of the
heaviest connected component of the tree of size i.

To this end, we define the dmax-distance bounded (max,+) convolution problem as follows:
given two vectors a and b with the condition that max |ai−ai−1| ≤ dmax and max |bi− bi−1| ≤ dmax

hold for every i. The goal is to compute a ? b. We show that a T (n) time algorithm for 0/1 tree
sparsity yields an Õ(T (dmaxn)) time algorithm for dmax-distance bounded (max,+) convolution of
two integer vectors a and b where n = |a|+|b|. This yields fast algorithms for convolution, knapsack,
tree separability, and tree separability when the input values are small integers. Indeed we already
know that convolution and knapsack problems admit almost linear time algorithms for such special
cases, nonetheless such a reduction sheds light on the connection between these problems.

We begin by showing that a T (n) time algorithm for 0/1 tree sparsity yields an Õ(T (dmaxn))
time algorithm for dmax-distance bounded convolution.

Lemma G.1. Given a T (n) time algorithm for 0/1 tree sparsity, one can solve the dmax-distance
bounded convolution for integer vectors in time O(T (dmaxn)).

Proof. Suppose we are given two dmax-distance bounded vectors a and b and wish to compute
a ? b. We assume w.l.o.g. that both a and b are of size n. Also, we can assume w.l.o.g. that both
vectors are increasing because of the following fact: If we add i(dmax +1) to every element i of both
vectors a and b, they both become increasing since |ai − ai−1| ≤ dmax and |bi − bi−1| ≤ dmax hold
for the original vectors. Moreover, if we compute c = a ? b for the new vectors, one can compute
the solution for the convolution of the original vectors by just subtracting i(dmax + 1) from every
element i of vector c. In addition to this, since the original vectors are dmax-distance bounded, after
adding i(dmax + 1) to every element i of the vectors, the resulting vectors are (2dmax + 1)-distance
bounded.

For the rest of the proof, we assume both vectors a and b are increasing and of size n. Moreover,
both vectors are dmax-distance bounded and thus both |ai − ai−1| ≤ dmax and |bi − bi−1| ≤ dmax

hold. We also assume a0 = b0 = 0 since one can ensure that constraint by shifting the values. To
compute a ? b, we construct an instance of the 0/1 tree sparsity problem with n+ 1 + an−1 + bn−1
vertices. The underlying tree has a root r connected to three different paths a′, b′, c′. Path c′

contains n consecutive vertices, each with weight 1. Paths a′ and b′ correspond to vectors a and b.
Vertices of path a′ are denoted by a′1, a

′
2, . . . , a

′
an−1

. The weight of each a′i is 1 if and only if there
exists a j such that aj = i. Similar to this, the vertices of path b′ are denoted by b′1, b2, . . . , b

′
bn−1

and the weight of a vertex b′i is equal to 1 if and only if bj = i for some j. An example of such
construction is shown in Figure 3.

Let s be the solution vector to the tree sparsity problem explained above. In other words, s is a
vector of size n+2+an−1 +bn−1 where si is the heaviest connected subtree of size i. We argue that
for every 0 ≤ i < |(a ? b)|, (a ? b)i is equal to j−n− 1 for the smallest j such that sj = n+ i+ 1. If
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Figure 3: The above tree corresponds to vectors a = 〈0, 1, 3, 4〉 and b = 〈0, 2, 4, 5〉.

this claim is correct then computing (a ? b) can be trivially done provided that the solution vector
s is given.

In order to prove the above statement, we first start with an observation.

Observation G.1. For any 1 ≤ i ≤ n+ 1 + an−1 + bn−1 there exists an optimal solution for size i
that contains vertex r.

Proof. For i ≤ n+ 1, one can simply start with vertex r and go along path c′ to collect i vertices
with weight 1. Obviously, this is the best we can achieve since the weight of every vertex is bounded
by 1. For i > n+1 we argue that the weight of the solution is at least n+1 since path c′ along with
vertex r and some subpath of a′ and b′ suffice to have a solution weight at least n+ 1. In addition
to this, if we remove vertex r from the tree, any connected subtree contains at most n vertices with
weight 1 and thus any solution not containing vertex r has a weight of at most n. Thus, one can
obtain an optimal solution containing path c′ and vertex r from any optimal solution. �

Observation G.2. For any i ≥ n+1, there always exists an optimal solution of size i that contains
both the entire path c′ and vertex r.

Proof. By Observation G.1 we already know that there always exists an optimal solution of size
i that contains vertex r. Notice that the weight of all vertices in path c′ is equal to 1. Thus, if the
solution doesn’t contain all vertices of path c′, one can iteratively remove a leaf from the solution
and instead add the next vertex in path c‘ to the solution. This does not hurt the solution since
the weight of all vertices in path c′ is equal to 1. �

Now, for an i ≥ n + 1 consider such a solution of the tree sparsity problem for size i. Apart
from n + 1 vertices of path c′ and r, such a solution contains a prefix of path a′ and a prefix of
path b′. The number of vertices with weight one in each of these paths indicates how many indices
in the corresponding vectors have a value equal to or smaller than the number of vertices of the
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solution in that path. This implies that if vector s is the solution of the tree sparsity problem then
(a ? b)i is equal to j − n− 1 for the smallest j such that sj = n+ 1 + i.

Notice that since a and b are dmax-distance bounded, both an−1 and bn−1 are bounded by dmaxn
and thus one can solve the corresponding tree sparsity problem in time T ((dmax + 1)n+ 1). Since
T is at most quadratic, the running time is O(T (dmaxn)). �

In Section 3, we discussed that when input values for convolution are small integers bounded by
emax, an Õ(emaxn) time algorithm can solve the problem exactly. Notice that when the input values
are bounded by emax, the input vectors are also emax-distance bounded and thus an Õ(T (emaxn))
is also possible via a reduction to 0/1 tree sparsity. We showed in Section A that the knapsack
problem reduces to knapsack convolution and used the prediction technique to solve the knapsack
convolution in time Õ(vmaxn) when the item values are bounded by vmax. However, it follows from
the definition that if the item values are integers bounded by vmax then knapsack convolution is a
special case of vmax-distance bounded convolution. Thus, a T (n) time solution for 0/1 tree sparsity
implies a Õ(T (vmaxn)) time solution for bounded value knapsack. It is interesting to observe that
the solutions of both tree sparsity and tree separability are wmax-distance bounded if the weights
are integers bounded by wmax. Therefore, a T (n) time algorithm for 0/1 tree sparsity also implies
a Õ(T (wmaxn)) time algorithm for tree sparsity and tree separability when the weights are integers
bounded by wmax. In particular, an Õ(n) time algorithm for 0/1 tree sparsity yields Õ(wmaxn)
time algorithms for both tree sparsity and tree separability when the weights are integers bounded
by wmax.

Theorem G.2. A T (n) time solution for 0/1 tree sparsity implies the following:

• A Õ(T (emaxn)) time algorithm for bounded knapsack convolution when the values are integers
in range [0, emax].

• A Õ(T (vmaxn)) time algorithm for 0/1 knapsack when the item values are integers in range
[0, vmax].

• A Õ(T (wmaxn)) time algorithm for tree sparsity when the vertex weights are integers in range
[0,wmax].

• A Õ(T (wmaxn)) time algorithm for tree separability when the vertex weights are integers in
range [0,wmax].
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H Reduction to Polynomial Convolution

Given two integer vectors a and b with the condition that all ai’s and bi’s are in range [0, emax] we
wish to find the convolution of the two vectors in the (max,+) setting. We denote this by a ? b.
Let n = |a|+ |b| and define a′ as a vector with the same size as a as follows:

∀0 ≤ i < |a| a′i = (n+ 1)ai .

Similarly, we assume b′ is a vector with the same size as b such that

∀0 ≤ i < |b| b′i = (n+ 1)bi .

This way, for all i and j we have a′ib
′
j = (n + 1)ai(n + 1)bi = (n + 1)ai+bj . Let c = a ? b be the

solution of the problem and c′ = a′ × b′ be the polynomial multiplication of a′ and b′, thus, for
every 0 ≤ i < |c′| we have

c′i =

i∑
j=0

a′ib
′
i−j =

i∑
j=0

(n+1)aj+bi−j ≤ i i
max
j=0

(n+1)aj+bi−j ≤ i(n+1)maxij=0 aj+bi−j ≤ i(n+1)ci ≤ n(n+1)ci .

Similarly one can show that

c′i =
i∑

j=0

a′ib
′
i−j =

i∑
j=0

(n+ 1)aj+bi−j ≥ i
max
j=0

(n+ 1)aj+bi−j ≥ (n+ 1)maxij=0 aj+bi−j ≥ (n+ 1)ci ,

and thus (n+ 1)ci ≤ c′i ≤ n(n+ 1)ci . Therefore, ci = blogn+1 c
′
ic and thus one can determine vector

c from c′. This reduction shows that any algorithm for computing c′ in time Õ(emaxn) yields a
similar running time for computing c. Polynomial multiplication can be computed in time Õ(n)
via FFT when the running time of each arithmetic operation is O(1) [10]. However, here, every
element of a′ and b′ can be as large as (n + 1)emax and thus every arithmetic operation for such
values takes time Õ(emax). Thus, the total running time of the FFT method for computing c′ is
Õ(emaxn). This yields an Õ(emaxn) time algorithm for computing a ? b.

Algorithm 7: BoundedRangeConvolution(a, b)

Data: Two vectors a and b
Result: a ? b

1 a′ ← a vector of size |a| s.t a′i = (n+ 1)ai ;

2 b′ ← a vector of size |b| s.t b′i = (n+ 1)bi ;
3 c′ = FFTPolynomialConvolution(a′, b′);
4 c← a vector of size |c′| s.t ci := blogn+1 c

′
ic;

5 Return c;

Lemma H.1 (also used in [1, 4, 8, 25, 26]). Given two vectors a and b whose values are integers in
the range [0, emax], there exists an algorithm to compute a ? b in time Õ(emaxn) where n = |a|+ |b|.

Of course Lemma H.1 holds whenever the range of the values of the vectors is an interval of
length emax. It has been also shown that Lemma H.1 holds even when the input values are in set
{0, 1, . . . , emax,−∞}. The reason behind this is that since the numbers are small, one can replace
−∞ by −2emax and solve the problem in time Õ(nemax) using the same procedure. Then, we
replace every negative value of the solution by −∞. The same idea can solve the problem when
input values are allowed to be ∞ as well as −∞. An immediate consequence of Lemma H.1 is that
even if the vectors do not have integer values, still one can use this method to approximate the
solution within a small additive error. We show this in Lemma H.2.
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Lemma H.2. Let a and b be two given vectors whose values are real numbers in range [0, emax]. One
can compute in time Õ(emaxn) a vector c with the same size as |a?b| such that (a?b)i−1 < ci ≤ (a?b)i
holds for all 0 ≤ i < |c| where n = |a|+ |b|.

Proof. For a vector x, let bxc be an integer vector of the same size where bxci = bxic. Moreover,
for a vector x we define αx as a vector of the same size where (αx)i = αxi. Note that for a given
vector x, both bxc and αx can be computed in time O(n) from x. We argue that c = 1/2(b2ac?b2bc)
meets the conditions of the lemma. This observation proves the lemma since all values of b2ac and
b2bc are integers in range [0, 2emax] and thus one can compute b2ac ? b2bc in time Õ(emaxn). With
additional O(n) operations we compute c from b2ac ? b2bc.

Notice that for every i we have 2ai − 1 < b2aic ≤ 2ai and similarly 2bi − 1 < b2bic ≤ 2bi.
Therefore, for every 0 ≤ i < |a ? b| we have (2a ? 2b)i − 2 < (b2ac ? b2bc)i ≤ (2a ? 2b)i. This implies
that (a ? b)i − 1 < (1/2(b2ac ? b2bc))i ≤ (a ? b)i holds for all 0 ≤ i < |a ? b| and thus the proof is
complete. �

Similar to Lemma H.1, Lemma H.2 also holds when −∞ and ∞ are allowed in the input.

Algorithm 8: ApproximateConvolution(a, b)

Data: Two vectors a and b
Result: An approximate solution to a ? b

1 a′ ← b2ac;
2 b′ ← b2bc;
3 c′ = BoundedRangeConvolution(a′, b′);
4 c = c′/2;
5 Return c;
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I Omitted Proofs of Section 3.1

Proof. [of Lemma 3.1]
first condition: Suppose for the sake of contradiction that the condition of the lemma doesn’t

hold for some i and j. We assume w.l.o.g. that ai − bi ≥ aj − bj and thus ai − bi > aj − bj + emax.
This implies that ai + bj > aj + bi + emax and hence (a ? b)i+j ≥ ai + bj > aj + bi + emax which
contradicts the first assumption of the lemma.

second condition: Based on the assumption of the lemma we have (a?b)i+k−emax ≤ ai+bk ≤
(a ? b)i+k. Similarly, (a ? b)2j − emax ≤ aj + bj ≤ (a ? b)2j . Since j − i = k − j then 2j = i + k
and thus both aj + bj and ai + bk are lower bounded by (a ? b)i+k − emax and upper bounded by
(a ? b)i+k. Hence we have |(ai + bk)− (aj + bj)| ≤ emax. If we add the term [(bk − ak)− (bj − aj)]
to the expression (ai + ak)− 2aj we obtain

|(ai + ak)− 2aj + [(bk − ak)− (bj − aj)]| = |(ai + (bk − ak) + ak)− (2aj + (bj − aj))|
= |(ai + bk)− (aj + bj)|
≤ emax,

which implies |(ai + ak)− 2aj | ≤ emax + |(bk − ak)− (bj − aj)|. Recall that we proved |(bk − ak)−
(bj − aj)| ≤ emax and thus |(ai + ak)− 2aj | ≤ 2emax. �

Proof. [of Lemma 3.2] We present a simple algorithm and show that (i) it provides a correct
solution for the problem and (ii) its running time is Õ(emaxn). In this algorithm, we construct two
vectors a′ and b′ from a and b such that all values of a′ and b′ are in range [0, 6emax] and a ? b can
be computed from a′ ? b′. The key idea here is that if we add a constant C to all components of
either a or b, this value is added to all elements of (a?b). Moreover, for a fixed C, if we add a value
of iC to every element i of both a and b, then every (a ? b)i is increased by exactly iC. Based on
these observations, we construct two vectors a′ and b′ of size n from a and b as follows:

a′i := ai + [3emax − a0] +i[(a0 − an−1)/(n− 1)]

b′i := bi + [3emax + an−1 − a0 − bn−1] +i[(a0 − an−1)/(n− 1)].

The transformation formulas are basically the application of the above operations to a and b which
are delicately chosen to make sure the values of a′ and b′ fall in range [0, 6emax]. Notice that vectors
a′ and b′ might have fractional values. However, we show that all the values of these vectors are in
range [0, 6emax]. Thus, we can use the algorithm of Lemma H.2 to compute in time Õ(emaxn) an
approximate solution c′ to a′ ? b′ within an error less than 1. Next, based on vector c′ we construct
a solution c as follows:

ci := dc′i − [6emax + an−1 − 2a0 − bn−1]− i[(a0 − an−1)/(n− 1)]e.

Finally, we report c as the solution to a ? b. This procedure is shown in Algorithm 9.
In what follows, we show that c is indeed equal to a ? b and that our algorithm runs in time

Õ(emaxn). We first point out a few observations regarding a′ and b′:

Observation I.1. a′0 = a′n−1 = b′n−1 = 3emax.

Proof. According to the formula,

a′n−1 = an−1 + [3emax − a0] + (n− 1)[(a0 − an−1)/(n− 1)]

= an−1 + [3emax − a0] + (a0 − an−1)
= 3emax + [a0 − a0] + (an−1 − an−1)
= 3emax.
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Algorithm 9: DistortedNTimesNConvolution(a, b)

Data: Two integer vectors a and b of size n meeting the condition of Lemma 3.2
Result: a ? b

1 a′ ← a vector of size n s.t a′i = ai + [3emax − a0] + i[(a0 − an−1)/(n− 1)];
2 b′ ← a vector of size n s.t b′i = bi + [3emax + an−1 − a0 − bn−1] + i[(a0 − an−1)/(n− 1)];
3 c′ ← ApproximateConvolution(a′, b′);
4 c← a vector of size 2n−1 s.t ci := dc′i− [6emax +an−1−2a0− bn−1]− i[(a0−an−1)/(n−1)]e;
5 Return c;

Moreover,

a′0 = a0 + [3emax − a0] + 0[(a0 − an−1)/(n− 1)]

= a0 + [3emax − a0]
= 3emax + [a0 − a0]
= 3emax.

Finally, for b′n−1 we have

b′n−1 = bn−1 + [3emax + an−1 − a0 − bn−1] + (n− 1)[(a0 − an−1)/(n− 1)]

= bn−1 + [3emax + an−1 − a0 − bn−1] + (a0 − an−1)
= 3emax + [bn−1 + a0 − a0 − bn−1] + (an−1 − an−1)
= 3emax.

Observation I.2. For every 0 ≤ i, j < n we have a′i + b′j ≥ (a′ ? b′)i+j − emax and

(a′ ? b′)i+j = (a ? b)i+j + [6emax + an−1 − 2a0 − bn−1] + (i+ j)[(a0 − an−1)/(n− 1)].

Proof. Based on the construction of a′ and b′ we have

a′i + b′j = ai + [3emax − a0] + i[(a0 − an−1)/(n− 1)]

+ bj + [3emax + an−1 − a0 − bn−1] + j[(a0 − an−1)/(n− 1)]

= ai + bj + [6emax + an−1 − 2a0 − bn−1] + i[(a0 − an−1)/(n− 1)] + j[(a0 − an−1)/(n− 1)]

= ai + bj + [6emax + an−1 − 2a0 − bn−1] + (i+ j)[(a0 − an−1)/(n− 1)].

Notice that [6emax + an−1 − 2a0 − bn−1] + (i + j)[(a0 − an−1)/(n − 1)] is the same for all pairs of
indices that sum up to i+ j and thus

(a′ ? b′)i+j = (a ? b)i+j + [6emax + an−1 − 2a0 − bn−1] + (i+ j)[(a0 − an−1)/(n− 1)].

Since we have ai + bj ≥ (a ? b)i+j − emax, by adding the [6emax + an−1 − 2a0 − bn−1] + (i+ j)[(a0 −
an−1)/(n− 1)] part to both sides of the inequality we get a′i + a′j ≥ (a′ ? b′)i+j − emax. �

Next, we use Observations I.1 and I.2 to show that the values of both vectors a′ and b′ are in the
interval [0, 6emax]. Observation I.2 states that both a′ and b′ meet the conditions of Lemma 3.1 and
thus for every 0 ≤ i < j < k < n subject to j− i = k− j we have |a′i+a′k−2aj | ≤ 2emax. Moreover,
Observations I.1 implies that both a′0 and a′n−1 are equal to 3emax. Now, let j = arg max a′i and
suppose for the sake of contradiction that a′j > 5emax. If 2j < n, then by setting i = 0 and
k = 2j Lemma 3.1 implies that a′0 + a′2j ≥ 2a′j − 2emax. Therefore, since a′0 = 3emax this implies
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a′2j − a′j ≥ a′j − 5emax and thus if a′j > 5emax then a′2j − a′j > 0 contradicts the maximality of
a′j . If 2j ≥ n, then by setting i = 2j − n − 1 and k = n − 1 one could show that if a′j > 5emax,
then a′2j−n−1 > a′j holds which again contradicts the maximality of a′j . One can make a similar
argument and show that if j = arg min a′i and a′j < emax, then either of a′2j or a′2j−n−1 should be
less than a′j which contradicts the minimality of a′j . Therefore, all the values of vector a′ lie in the
interval [emax, 5emax].

Recall that by Observation I.2, a′ and b′ meet the condition of Lemma 3.1 and thus for all
0 ≤ i < n we have

|(a′i − b′i)− (a′n−1 − b′n−1)| = |(a′i − b′i)− (3emax − 3emax)|
= |(a′i − b′i)|
≤ emax.

Since for all 0 ≤ i < n, emax ≤ a′i ≤ 5emax holds, we have 0 ≤ b′i ≤ 6emax which shows that the
values of both a′ and b′ lie in the interval [0, 6emax]. However, since the values are not integer, still
we cannot compute a′ ? b′ in time Õ(emaxn). Instead, we can compute in time Õ(emaxn) a vector
c′ such that (a′ ? b′)i − 1 < c′i ≤ (a′ ? b′)i holds for all 0 ≤ i < |c′|. Observation I.2 implies that for
all 0 ≤ i < |c′| we have

(a ? b)i − 1 < c′i − [6emax + an−1 − 2a0 − bn−1]− i[(a0 − an−1)/(n− 1)] ≤ (a ? b)i.

Notice that since both a and b are integer vectors, a ? b is also an integer vector and thus all its
elements have integer values. Therefore, dc′i− [6emax +an−1−2a0−bn−1]− i[(a0−an−1)/(n−1)]e =
(a ? b)i for all 0 ≤ i < |c′| and hence our algorithm computes a ? b correctly.

With regard to the running time, all steps of the algorithm run in time O(n), except where we
approximate c′ from a′ and b′ which takes time Õ(emaxn) since 0 ≤ a′i, b

′
i ≤ 6emax (Lemma H.2).

Thus, the total running time of our algorithm is Õ(emaxn).
Proof. [of Lemma 3.3] As mentioned earlier, we show this lemma by a direct reduction to
Lemma 3.2. We assume w.l.o.g. that |b| ≥ |a|. Let l = d|b|/|a|e and construct l intervals (xi, yi) of
length |a| (i.e. yi = xi+ |a|−1 for all i) as follows: for 1 ≤ i < l set xi = (i−1)|a| and yi = i|a|−1.
Also, set xl = |b| − |a| and yl = |b| − 1. This way, every 0 ≤ i < |b| appears in at least one interval.

Next, we construct l vectors b1, b2, . . ., bl from b where every bi is a vector of length |a| and
bij = bxi+j . We next compute ci = a ? bi for all 1 ≤ i ≤ l, each in time Õ(emax|a|) using Lemma 3.2.

Thus, the total running time of this step is Õ(emax|a|l) = Õ(emax(|a|+ |b|)).
Finally, we construct a solution of size |a|+ |b| − 1 initially containing −∞ for all elements and

for every vector 0 ≤ j < 2|a| − 1 and ci, we set cxi+j := max{cxi+j , cij}. This takes a total time of

O(|a|l) = O(|a|+ |b|) and therefore the total running time of the algorithm is Õ(emax(|a|+ |b|)).
We argue that for all 0 ≤ i < |a| + |b| − 1, ci ≤ (a ? b)i holds. To this end, suppose for the

sake of contradiction that ci > (a ? b)i for an 0 ≤ i < |c|. Due to our algorithm, ci = ckj for some

1 ≤ k ≤ l and 0 ≤ j < 2|a| − 1 such that xk + j = i. Hence, ci = (a ? bk)j ≤ (a ? b)xk+j and
since xk + j = i we have ci ≤ (a ? b)i which contradicts ci > (a ? b)i. Also, if ci < (a ? b)i for
some i, then we argue that by definition (a ? b)i = bj + ai−j for some j. Since every element of
b appears in at least one interval, there exists a k such that xk ≤ j ≤ yk. Since bkj−xk = bj we

have cki−xk = ckj−xk+(i−j) ≥ bj + ai−j = (a ? b)i. Note that ci ≥ cki−xk and thus ci ≥ (a ? b)i which

contradicts ci < (a ? b)i. �
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Algorithm 10: DistortedConvolution(a, b)

Data: Two integer vectors a and b meeting the condition of Lemma 3.3
Result: a ? b

1 l← d|b|/|a|e;
2 for i ∈ [1, l − 1] do
3 xi ← (i− 1)|a|;
4 yi ← i|a| − 1;

5 xl ← |b| − |a|;
6 yl ← |b| − 1;
7 for i ∈ [1, i] do
8 bi ← a vector of size |a| s.t. bij = bxi+j ;

9 ci ← DistortedNTimesNConvolution(a, bi);

10 c← a vector of size |a|+ |b| − 1 with values set to −∞ initially;
11 for i ∈ [1, l] do
12 for j ∈ [0, 2|a| − 2] do
13 cxi+j ← max{cxi+j , cij};

14 Return c;

J Omitted Proofs of Section 3.2

Proof. [of Observation 3.1] Suppose for the sake of contradiction that P(α, β) is not an interval
of a. This means that there are three integers i < j < k such that i, k ∈ P(α, β) but j /∈ P(α, β).
Therefore, we have xi ≤ xk ≤ α and yk ≥ yi ≥ β but either xj > α or yj < β. However, since
the intervals are monotone, xj ≤ xk and also yj ≥ yi and thus xj ≤ α and yj ≥ β which is a
contradiction. �

Proof. [of Observation 3.2] Similar to Observation 3.1, suppose for the sake of contradiction
that P(α1, β1) \ P(α2, β2) is not an interval. Since both of P(α1, β1) and P(α2, β2) are intervals
(see Observation 3.1), this implies that there exist i < j < k such that i, j, k ∈ P(α1, β1), i, k /∈
P(α2, β2), and j ∈ \P(α2, β2). In other words, [α1, β1] is a subset of [xi, yi], [xj , yj ], and [xk, yk].
Moreover, none of [xi, yi] and [xk, yk] entirely contain [α2, β2] but [xj , yj ] contains [α2, β2]. Notice
that if [xi, yi] contains β2 the monotonicity of the intervals implies that [xi, yi] contains [α2, β2].
Similarly, we can imply that α2 /∈ [xk, yk] and thus [xi, yi] ∩ [xk, yk] ⊆ [α2, β2]. Since [α1, β1] and
[α2, β2] are disjoint, this implies [α1, β1] is empty and thus the solution is empty and contradicts
our assumption. �

41



K An Õ(vmaxt + n) Time Algorithm for Knapsack

The result of this section follows from the reduction of [11] from knapsack to (max,+) convolution.
However, for the sake of completeness we restate the reduction of [11] and use Theorem A.3 to
solve knapsack in time Õ(vmaxt+ n), in case the item values are integers in range [0, vmax].
Proof. [of Theorem A.4] For simplicity, we assume that the goal of the knapsack problem is to
find the solution for all knapsack sizes 0 ≤ i ≤ t. The blueprint of the reduction is as follows: We
first divide the items into dlog te buckets in a way that the sizes of the items in every bucket differ
by at most a multiplicative factor of two. Next, for each of the buckets, we solve the problem with
respect to the items of that bucket. More precisely, for every bucket i we compute a vector ci of
size t + 1 where (ci)j is the solution to the knapsack problem for bucket i and knapsack size j.
Once we have these solutions, it only suffices to compute c1 ? c2 ? . . . ? cdlog te and report the first
t + 1 elements as the solution. Therefore, the problem boils down to finding the solution for each
of the buckets.

In every bucket i, the size of the items is in range [2i−1, 2i − 1]. Now, if we fix a range [r1, r2]
for the item sizes, the maximum number of items used in any solution is t/r1. Therefore, if we
randomly put the items in t/r1 categories, any fixed solution will have no more than polylog(t)
items in every category. Based on this, we propose the following algorithm to solve the problem for
item sizes in range [r1, r2]: randomly put the items into t/r1 categories. For every category, solve
the problem up to a knapsack size r2polylog(t) and merge the solutions. We show that merging
the solutions can be done via some convolution invocations of total size Õ(t). Thus, the only non-
trivial part is to solve the problem up to a knapsack size r2polylog(t) for every category of items.
Since r2/r1 ≤ 2, each of these solutions consists of at most polylog(t) items. Cygan et al. [11] show
that if we again put these items in polylog(t) random groups, then using (max,+) convolution one
can solve the problem in almost linear time. We bring the pseudocode of the algorithms below.
For correctness, we refer the reader to [11]. Here, we just show that the algorithm runs in time
Õ(vmaxt + n) if we use the knapsack convolution. Since the algorithm is probabilistic, in order to
bring the success probability close to 1, we use a factor C = polylog(t) in our algorithm and run
the procedures C times and take the best solution found in these runs. We do not specify the exact
value of C, however, since C is logarithmically small, it does not have an impact on the running
time of our algorithms since we use the Õ notation.

Algorithm 11 solves the problem when the solution consists of at most C items.

Algorithm 11: BoundedSolutionKnapsackAlgorithm(t, {(s1, v1), (s2, v2), . . .})
Data: Knapsack size t and items (s1, v1), (s2, v2), . . . , (sn, vn)
Result: A solution vector c

1 c←A vector of size t+ 1 with all 0’s initially;
2 for cnt ∈ [1,C] do
3 Randomly put the items in C2 lists l1, l2, . . . , lC;
4 for i ∈ [1,C2] do
5 ci ← A vector of size t+ 1 where cij is the highest value of an item in li with size at

most j;

6 c′ ← c1 ? c2 ? . . . cC
2
;

7 for i ∈ [0, t] do
8 ci = max{ci, c′i};

9 return c;

Notice that C is logarithmically small in size of the original knapsack. The only time consuming
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operation of the algorithm is Line 6 which takes time Õ(vmaxt) due to Lemma H.1 since the item
values are bounded by vmax. Moreover, Algorithm 11 iterates over all items at least once. Thus,
the total running time of Algorithm 11 is Õ(vmaxt + n) for a given knapsack size t and n items.
Algorithm 12 uses Algorithm 11 to solve the knapsack problem when all the item sizes are in range
[r1, r2] and r2 ≤ 2r1.

Algorithm 12: BoundedRangeKnapsackAlgorithm(t, {(s1, v1), (s2, v2), . . .}, [r1, r2])
Data: Knapsack size t, items (s1, v1), (s2, v2), . . . , (sn, vn), and range [r1, r2]
Result: A solution vector c

1 c←A vector of size t+ 1 with all 0’s initially;
2 for cnt ∈ [1,C] do
3 Randomly put the items in dt/r1e lists l1, l2, . . . , ldt/r1e;

4 for i ∈ [1, dt/r1e] do
5 ci ← BoundedSolutionKnapsackAlgorithm(Cr2, li);

6 c′ ← Merge({c1, c2, . . . , cdt/r1e});
7 for i ∈ [0, t] do
8 ci = max{ci, c′i};

9 return c;

Algorithm 12 puts the items into dt/r1e different categories and solves each category using
Algorithm 11. Since the running time of Algorithm 11 is Õ(vmaxt + n), except the part where we
merge the solutions. In the following, we describe the algorithm for merging the solutions and show
that its running time is Õ(vmaxt) where t is the original knapsack size.

Algorithm 13: Merge({c1, c2, . . . , ck})
Data: k vectors c1, c2, . . . , ck with total size t
Result: c1 ? c2 ? c3 . . . ck

1 if k = 1 then
2 return c1

3 else

4 a← Merge(c1, c2, . . . , cbk/2c);

5 b← Merge(cbk/2c+1, cbk/2c+2, . . . , ck);
6 return KnapsackConvolution(a, b);

7 return c;

Notice that Algorithm 13 uses the knapsack convolution to merge the vectors. Every merge for
vectors with total size n takes time Õ(vmaxn). Moreover, the total size of the vectors is Õ(t) and
due to Algorithm 13, the total length of the vectors in all convolutions is Õ(t). Thus, Algorithm 13
runs in time Õ(vmaxt).

Finally, in Algorithm 14 we merge the solutions of different buckets and report the result.

Algorithm 14: KnapsackViaConvolution(t, {(s1, v1), (s2, v2), . . .})
1 l1, l2, . . . , ldlog te+1 ← dlog te+ 1 lists of items initially empty;

2 for i ∈ [1, dlog te+ 1] do
3 Put all items with size in range [2i−1, 2i − 1] in li;
4 ci ← BoundedRangeKnapsackAlgorithm(t, li, [2

i−1, 2i − 1]);

5 c← c1 ? c2 ? . . . ? cdlog te+1;
6 return the first t+ 1 elements of c;
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Since we use the knapsack convolution for merging the solutions of different buckets, the running
time of Algorithm 14 is also Õ(vmaxt+ n); �
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L Omitted Proofs of Section A.1

Proof. [of Observation A.1] We argue that in any optimal solution, if for two items i and j we
have wi/si > wj/sj then either fi = 1 or fj = 0. If not, one can increase fi by ε and decrease
fj by sjε/si and obtain a better solution. Notice that for items with the same ratio of wi/si it
doesn’t matter which items are put in the knapsack so long as the total size of these items in the
knapsack is fixed. Thus, the greedy algorithm provides an optimal solution. The running time of
the algorithm is O(n log n) since after sorting the items we only make an iteration over the items
in time O(n). �

Proof. [of Observation A.2] Similar to Observation A.1, in order to maximize the weight we always
add the item with the highest ratio of wi/si to the knapsack. Therefore, this yields the maximum
total weight for any knapsack size t. The running time of the algorithm is O(n log n) since it sorts
the items and puts them in the knapsack one by one. �

Proof. [of Observation A.3] This observation follows from the greedy algorithm for knapsack.
Notice that we add the items to the knapsack greedily and the solution consists of two types of
items: items of knapsack ka and items of knapsack kb. Since the algorithm greedily adds the items
to the solution, the order of items is based on wi/si and thus the order of items added to the
solution for each type is also based on wi/si. Thus, if for some knapsack size x we define Fa(x)
to be the total size of the items in the solution of x that belong to ka and set Fb(x) equal to the
size of the solution for items of knapsack kb, then c′(x) = a′(Fa(x)) + b′(Fb(x)). The monotonicity
of Fa and Fb follow from the fact that in order to update the solution we only add items and we
never remove any item from the solution. �

In the proofs of Observations A.4 and A.5 we refer to the solution of a′(x) and b′(x) as the
solution that the greedy algorithm for fractional knapsack provides for knapsack size x and knapsack
problems ka and kb, respectively. Similarly, we denote by the solution of c′(x) the solution that
Algorithm 2 provides for the fractional convolution of a? b with respect to knapsack size x. We say
two solutions differ in at most one item, if they are the same except for one item.
Proof. [of Observation A.4] We assume w.l.o.g. that y and y′ are close enough to make sure
the solution of c′(x + y) differs from the solution of c′(x + y′) by at most one item. Similarly, we
assume w.l.o.g. that the solutions of b′(y) and b′(y′) differ by at most one item. If the statement of
Observation A.4 is correct for such y and y′ then it extends to all y < y′ in range [0,F−1a (x) − x]
since for every y < y′ one can write y < y1 < y2 < . . . < y′ such that every two consecutive elements
are close enough. Therefore, the statement holds for any pairs of consecutive elements and thus
holds for y and y′. In order to compare c′(x + y) − a′(x) − b′(y) with c(x + y′) − a′(x) − b′(y′) it
only suffices to compare c′(x+ y′)− c′(x+ y) with b′(y′)− b′(y).

It follows from the monotonicity of Fa that since y < y′ < F−1a (x) − x, then Fa(x + y) ≤
Fa(x + y′) ≤ x and therefore Fb(x + y′) ≥ y′. Let (si, wi) be the last item in the solution of
knapsack problem kb for knapsack size y′. Hence, due to Algorithm 2, any item not included in the
solution of c′(x + y) has a ratio of weight over size which is upper bounded by wi/si. Therefore,
c′(x + y′) − c′(x + y) ≤ (y′ − y)(wi/si). Since b′(y) and b′(y′) differ in at most one item we
have b′(y) − b′(y) = (y′ − y)(wi/si). Thus, c′(x + y′) − c′(x + y) ≤ b′(y) − b′(y) and therefore
c′(x+ y′)− a′(x)− b′(y′) ≤ c′(x+ y)− a′(x)− b′(y). �

Proof. [of Observation A.5] The proof is similar to that of Observation A.4. We assume w.l.o.g.
that the solutions of c′(x + y) and c′(x + y′) differ in at most one item and also the solutions of
b′(y) and b′(y′) differ in at most one item. By monotonicity of Fa we have Fa(x + y′) ≥ x and
thus Fb(x + y′) ≤ y′. This means that if (si, wi) is the last item of c′(x + y′) then any item not
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included in b′(y) has a ratio of weight over size of at most wi/si. This implies that b′(y′)− b′(y) ≤
(y′−y)wi/si = c′(x+y′)−c′(x+y) which implies c′(x+y)−a′(x)+b′(y) ≤ c′(x+y′)−a′(x)−b′(y′).

�

Proof. [of Observation A.6] Since x < x′ and y ≤ F−1a (x)− x then we have F−1b (y)− y ≤ x < x′.
Since a′ and b′ are symmetric, this observation follows from Observation A.5. �

Proof. [of Observation A.7] Similar to Observation A.6, we have x < x′ ≤ F−1b (y) − y and the
observation reduces to Observation A.5 by switching a′ and b′. �
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M Omitted Proof of Section F.1

Proof. [of Lemma F.4] As aforementioned, the proof follows from the ideas of Cygan et al. [11]
and Backurs et al. [1]. We assume that the tree is rooted at some arbitrary vertex and for a vertex
v we refer to the subtree rooted at v by T (v). We say the solution of a subtree T (v) is a vector a
of size |T (v)| + 1, where every ai denotes the minimum cost for putting the vertices of T (v) into
two disjoint components of sizes i and |T (v)| − i where vertex v itself in the part with size i.

Let u and v be two disjoint subtrees of the graph and denote by a and b the solutions of these
subtrees. If we add an edge from u to v and wish to compute the solution for the combined tree,
one can derive the solution vector from a and b. To this end, there are two possibilities to consider:
either u and v are in the same component in which case the solution is equal to a ? b. Otherwise,
we construct a vector b′ where b′i = 1 + b|T (v)|−i and compute a ? b′ to find the answer Therefore,
merging the solutions of two subtrees reduces to computing the convolution of two solution vectors.

If the tree is balanced, and therefore the height of the tree is O(log n), the standard dynamic
program yields a running time of T (n) since the total lengths of the convolutions we make is
O(n log n). However, if the tree is not balanced, in the worst case, the height of the tree also
appears in the running time. A classic tool to overcome this challenge is the spine decomposition
of [21] to break the tree into a number of spines. Every spine is a path starting from a vertex
and ending at some leaf. We say a spine x is above a spine y, if there exists a vertex in y such at
least one parent of that vertex appears in x. We denote this relation with x ≺ y. Such a spine
decomposition satisfies the property that every sequence of spines x1 ≺ x2 ≺ . . . ≺ xk has a length
of at most O(log n). This enables us to solve the dynamic program in time Õ(T (n)). The overall
idea is that instead of updating every vertex at each stage, we update the solution of a spine. Since
every spine is a path, we can again reduce the problem of combining the solutions of a spine to
convolution. This way, the height of the updates reduces to O(log n) and thus our algorithm runs
in time Õ(T (n)). We refer the reader to [11] and [1] for a formal proof. �
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