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ABSTRACT
We present the first polynomial-time approximation scheme
(PTAS), i.e., (1 + ε)-approximation algorithm for any con-
stant ε > 0, for the planar group Steiner tree problem (in
which each group lies on a boundary of a face). This re-
sult improves on the best previous approximation factor of
O(logn(log logn)O(1)). We achieve this result via a novel
and powerful technique called spanner bootstrapping, which
allows one to bootstrap from a superconstant approxima-
tion factor (even superpolynomial in the input size) all the
way down to a PTAS. This is in contrast with the popular
existing approach for planar PTASs of constructing light-
weight spanners in one iteration, which notably requires a
constant-factor approximate solution to start from. Spanner
bootstrapping removes one of the main barriers for designing
PTASs for problems which have no known constant-factor
approximation (even on planar graphs), and thus can be
used to obtain PTASs for several difficult-to-approximate
problems.

Our second major contribution required for the planar
group Steiner tree PTAS is a spanner construction, which
reduces the graph to have total weight within a factor of the
optimal solution while approximately preserving the opti-
mal solution. This is particularly challenging because group
Steiner tree requires deciding which terminal in each group
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to connect by the tree, making it much harder than recent
previous approaches to construct spanners for planar TSP
by Klein (FOCS’05 & SICOMP’08), subset TSP by Klein
(STOC’06), Steiner tree by Borradaile, Klein, and Math-
ieu (SODA’07 & TALG’09), and Steiner forest by Bateni,
Hajiaghayi, and Marx (STOC’10 & JACM’11) (and its im-
provement to an efficient PTAS by Eisenstat, Klein, and
Mathieu (SODA’12)). The main conceptual contribution
here is realizing that selecting which terminals may be rele-
vant is essentially a complicated prize-collecting process: we
have to carefully weigh the cost and benefits of reaching or
avoiding certain terminals in the spanner. Via a sequence
of involved prize-collecting procedures, we can construct a
spanner that reaches a set of terminals that is sufficient for
an almost-optimal solution.

Our PTAS for planar group Steiner tree implies the first
PTAS for geometric Euclidean group Steiner tree with ob-
stacles, as well as a (2 + ε)-approximation algorithm for
group TSP with obstacles, improving over the best previ-
ous constant-factor approximation algorithms. By contrast,
we show that planar group Steiner forest, a slight general-
ization of planar group Steiner tree, is APX-hard on planar
graphs of treewidth 3, even if the groups are pairwise disjoint
and every group is a vertex or an edge.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; F.2.2 [Nonnumerical
Algorithms and Problems]: Routing and layout

General Terms
Algorithms, Design, Theory

Keywords
Approximation algorithm, PTAS, group Steiner tree, planar
graphs

1. INTRODUCTION
The Steiner tree problem is one of the most fundamental

problems in combinatorial optimization and network design



with both practical and theoretical significance. In this clas-
sical problem which is one of the first problems shown NP-
hard by Karp [24], given a weighted graph G = (V,E) and
a set of terminals T , the goal is to find a minimum-length
tree such that all terminals are connected in the tree. The
problem remains hard even on planar graphs [19]. There is a
long sequence of papers giving approximation factors better
than 2 (2 is simple via a reduction to minimum spanning
tree) for this problem [35, 36, 7, 37, 31, 25, 23, 33, 10]; the
current best approximation ratio is 1.386 [10].

Reich and Widmayer [32] introduced a natural and by
now classic generalization of Steiner tree, namely the group
Steiner tree problem: given are a graph G with edge weights,
and a collection g1, g2, . . . , gk of node (terminal) sets called
groups. The goal is to find a minimum-weight connected sub-
graph of G that contains at least one node from each group.
Reich and Widmayer [32] are especially motivated by wire-
routing phase of VLSI design, in which a net is a set of pins
on the boundaries of various components that must be con-
nected and for each component, there is flexibility as to the
location of the pin used that we should exploit. As Demaine,
Hajiaghayi, and Klein [16] observe, in the original VLSI de-
sign application of Reich and Widmayer [32], the elements
of a single group are all located on the boundary of a com-
ponent which occupies a (connected) region on the plane.
Thus in this real-world application we need to solve an in-
stance of the planar group Steiner tree problem. In planar
group Steiner tree given a planar embedded graph G with
edge weights, and a collection of groups g1, g2, . . . , gk and
corresponding distinct faces f1, f2, . . . , fk of G, such that
the nodes belonging to each group gi lie on the boundary
of the corresponding face fi, the goal is to find a minimum-
weight connected subgraph of G that contains at least one
node from each group. Indeed equivalently we can assume
gi, for 1 ≤ i ≤ k, consists of the nodes on the boundary of
fi.

Much research has gone into finding good approximation
algorithms for (planar) group Seiner, which itself is a very
important special case of directed Steiner tree, i.e., Steiner
tree on directed graphs. For general graphs, the best approx-
imation ratio known to be achievable in polynomial time [20]
is O(log3 n), and for trees, the best known is O(log2 n).
Even when the host graph is a tree and hence planar, but
the groups are not necessarily faces, the problem cannot
be approximated better than Ω(log2−ε n) unless NP admits
quasipolynomial-time Las Vegas algorithms [22]. It would
thus appear that restricting the input to planar graphs can-
not lead to substantially improved approximation. The best
approximation factor for planar group Steiner tree is O(logn

(log logn)O(1)) due to Demaine, Hajiaghayi, and Klein [16].
In this paper, we present the first polynomial-time ap-

proximation scheme (PTAS), i.e., (1 + ε)-approximation al-
gorithm for any constant ε > 0, for the planar group Steiner
tree problem via a novel and powerful approach called span-
ner bootstrapping. In addition to our novel bootstrapping
approach, we also need to first construct a spanner for pla-
nar group Steiner tree. In particular, deciding which termi-
nal in a group is the one to participate in an optimal solu-
tion makes this task much harder than previous and recent
approaches to construct spanners and thus obtain PTASs
for planar TSP by Klein (FOCS’05 & SICOMP’08) [27],
subset TSP by Klein (STOC’06) [26], Steiner tree by Bor-
radaile, Klein, and Mathieu (SODA’07 & TALG’09)[9], and

Steiner forest by Bateni, Hajiaghayi, and Marx (STOC’10
& JACM’11) [6] (and its improvement to an efficient PTAS
by Eisenstat, Klein, and Mathieu (SODA’12) [17]). Last
but not least, we show planar group Steiner forest, a slight
generalization of planar group Steiner tree in which the goal
is to find a forest of minimum length that connects pairs
of given group terminals is APX-hard on planar graphs of
treewidth 3, even if the groups are pairwise disjoint and ev-
ery group is a vertex or an edge. This is in sharp contrast
with planar Steiner forest, an immediate generalization of
Steiner tree, which has a PTAS as well [6].

1.1 Improvements for geometric group Steiner
tree and group TSP

Also motivated in part by the VLSI application of Reich
and Widmayer [32], Mata and Mitchell [28] consider the fol-
lowing problem: given a set of n polygonal regions in the
plane, find a tour that visits at least one point from each
region. They describe this problem as a special case of the
problem TSP with neighborhoods (also called group TSP).
They give a polynomial-time O(logn)-approximation algo-
rithm. Because the tour contains a spanning tree, and dou-
bling each edge of a tree yields a tour, it is also an approxi-
mation algorithm for group Steiner tree where the groups are
the polygonal regions. Gudmundsson and Levcopoulos [21]
gave a faster algorithm for the same problem. No known
polynomial-time algorithm achieves an approximation ratio
better than Θ(logn) for this problem. On the lower-bound
side, unless P = NP, no constant-factor approximation is
possible for disjoint disconnected regions, and no (2 − ε)-
approximation is possible for (nondisjoint) connected regions
[34].

Arkin and Hassin [2] gave constant-factor approximation
algorithms for the special cases of parallel unit-length line
segments, translated copies of a polygonal region, and cir-
cles. Mitchell (SODA’07) [29] gave a PTAS for group TSP
when the groups are disjoint and“fat.” Most recently, Mitchell
(SoCG’10) [30] gave a constant-factor approximation for group
TSP when the groups are disjoint and connected.

An important difference in our problem is that we can-
not route through groups, because faces serve as obstacles,
whereas the geometric problem allows routing through groups.
This difference seems to make the problem harder to approx-
imate according to the literature. Nevertheless since planar
graphs can capture plane metrics by a standard mapping of
each point in the plane to a point of a grid with small size
cells (in terms of ε), our PTAS for planar group Steiner tree
gives a PTAS for plane group Steiner tree with obstacles as
well and thus a (2 + ε)-approximation algorithm for group
TSP with obstacles (by simply doubling each edge and take
an Eulerian tour). This is in contrast with the result of
Mitchell [30] whose constant approximation factor seems so
large that according to him no attempt was made to com-
pute it exactly. Indeed he conjectures that one should be
able to obtain a 2 + ε-approximation for group TSP and
our results gives the same conjectured constant even for the
problem of group TSP with obstacles. In addition, our graph
approach has the advantage that planar graphs can capture
metrics that are not captured by the Euclidean metric, use-
ful, e.g., in the VLSI problem where the routing of a net
must avoid obstacles and previously routed nets.

1.2 Results and techniques



Our main result in this paper is a PTAS for the planar
group Steiner tree problem.

Theorem 1. For any constant ε̄ > 0, there is a polynomial-
time (1 + ε̄)-approximation algorithm for the planar group
Steiner problem.

By a standard mapping of each point in the plane to a
point of a grid with small size cells (in terms of ε), we obtain
the following corollary:

Corollary 2. For any constant ε̄ > 0, there is a polynomial-
time (1+ε̄)-approximation algorithm for geometric Euclidean
group Steiner tree with obstacles as well as a (2+ε̄)-approximation
algorithm for group TSP with obstacles.

The proof of Theorem 1 builds on the (by now) stan-
dard steps of designing planar approximation schemes using
spanners. However, we contribute two major new concep-
tual ideas to this framework: spanner bootstrapping and
constructing a planar group Steiner spanner via prize col-
lecting.

Approximation schemes via spanners: old and new steps.

Previous work (e.g., [26, 14, 9, 6, 5]) formulated a general
recipe for designing approximation schemes for planar graph
problems. Briefly, this framework consists of the following
steps:

• Step 1: Constant-factor approximation. The
first step is to compute a constant-factor approxima-
tion. In many cases, such an approximation is known
to be obtainable in polynomial time even on general
graphs.
• Step 2: Spanner construction. Next the initial

constant-factor approximation is extended into a sub-
graph satisfying two properties: (1) there is a (1 + ε)-
approximate solution using only the edges of the sub-
graph and (2) the total weight of the edges in the
subgraph is at most f(1/ε) times the weight of an
optimum solution, that is, it is still a constant-factor
approximation. Subgraphs satisfying these properties
are usually called spanners in the PTAS literature (the
name comes from the apparent similarity to distance
spanners). If our goal is to find a (1 + ε)-approximate
solution, then it is sufficient to solve the problem re-
stricted to the spanner.
• Step 3: Treewidth reduction via shifting. A sim-

ple shifting argument, going back to the work of Baker
[3], allows us to reduce the treewidth of the spanner
to a constant depending on δ, at the cost of increas-
ing the optimum cost by at most an δ-fraction of the
weight of the spanner. As the spanner is a constant-
factor approximation of the optimum, it is possible to
perform this step with a sufficiently small δ so that the
optimum changes only by at most a factor of 1 + ε.
• Step 4: Solving bounded-treewidth instances.

Finally, after reducing the treewidth of the spanner to
a constant depending only in 1/ε, we can solve the
instance restricted to the spanner using standard dy-
namic programming techniques.

We make two important contribution to this framework.
When trying to apply these steps to give a PTAS for planar

group Steiner tree, we run into a difficulty already at the first
step: unlike for the ordinary Steiner tree problem, there is
no constant-factor approximation known for group Steiner
tree. We get around this difficulty by using the spanner con-
struction itself to obtain better and better approximation,
alleviating need for an initial constant-factor approximation.

Spanner bootstrapping. Given an arbitrary initial
solution, we can use the spanner construction to ob-
tain a solution whose cost is higher than the optimum
by at most ε times the cost of the initial solution. If
this results in a solution that is better than the ini-
tial solution, we can repeat the process. Otherwise,
we can conclude that the initial solution is a constant-
factor approximation, and hence proceed with Steps
2–4 above.

As we discuss below, this technique is very general and
could potentially be applied to a large number of problems.
It can be expected that it will become the natural opening
step for the design of planar approximation schemes.

Having avoided the need for a constant-factor approxima-
tion using spanner bootstrapping, our goal is to generalize
the planar Steiner tree spanner construction to planar group
Steiner tree. That is, we want to extend the initial solution
into a spanner such that there is an almost-optimal solution
using only the edges of the spanner and the total cost of the
spanner is at most a constant factor higher than the cost
of the initial solution. However, this task is fundamentally
different and more difficult for the group Steiner tree prob-
lem. The difficulty stems from the fact that we do not know
which terminals of the groups are reached by an optimum
solution. Thus it is not sufficient that the spanner contains
at least one terminal from each group, we have to make sure
that the spanner contains the set of terminals reached by
some almost-optimal solution. On the one hand, the span-
ner cannot afford to reach every terminal of every group, as
the cost of such a subgraph may be prohibitively high. On
the other hand, omitting even one terminal from the span-
ner may have dire consequences on the cost of the optimum
when the instance is restricted to the spanner. Therefore,
we have to carefully weigh the costs and benefits of reaching
certain (sets of) terminals. Our second main contribution
is demonstrating that this task of choosing which terminals
should be reached is essentially a prize-collecting problem in
its nature.

Discovering and reaching relevant terminals with
prize collecting. We define a potential function on
(sets of) terminals, giving an upper bound on the cost
of missing that terminal in the solution. We say that a
tree is cheap if its cost is at most 1/ε times the poten-
tial of the terminals it reaches. We extend the spanner
with a collection of cheap trees in a systematic way.
We argue that any solution can be modified such that
it reaches only terminals on the spanner and the cost
increases only at most by a factor of 1+ε. The modifi-
cations can be charged on certain subtrees of the solu-
tion if these trees are not cheap. Otherwise, if they are
cheap, then we would have added them to the spanner.

There are several technical difficulties that need to be ad-
dressed in the implementation of this idea. In fact, a large
part of the paper is devoted to working out various versions



of this scheme: defining appropriate potential functions, an-
alyzing how the solution can be modified to avoid terminals,
defining the appropriate notion of cheap trees, and so on.
Prize-collecting is a recurring theme of the proofs: we make
a decision on whether or not to extend the spanner with a
tree based on comparing the cost of the tree with the total
prize (potential) collected by the tree.

Spanner bootstrapping: more details and formal defi-
nition.

Let us discuss spanner bootstrapping in more detail. The
idea of using a constant-factor approximation to the prob-
lem as a “backbone” and then taking an ε-fraction of this
backbone in our final solution has been initially introduced
by Demaine and Hajiaghayi (SODA’05) [12] to obtain a
PTAS for planar connected dominating set. Later Bor-
radaile, Klein, and Mathieu (SODA’07 & TALG’09) [9] not
only used a constant-factor approximate solution as a back-
bone but also managed to construct a spanner whose total
size is still linear in optimum to obtain a PTAS for pla-
nar Steiner tree. However, in both cases above after con-
structing a backbone/spanner, we take an ε-fraction of the
backbone/spanner along with an optimum solution in a “re-
duced” graph instance of bounded treewidth as our final so-
lution. This introduces an error that is ε times the weight
of the spanner. Since the bound for treewidth is linear in
O(1/ε), this approach works only when the starting back-
bone is a constant-factor approximation of optimum solution
(or in some special cases a logarithmic approximate solution)
to obtain a (quasi-)polynomial time approximation scheme.
Our new technique of spanner bootstrapping removes this
main barrier of having a constant approximation factor (or
at most logarithmic in very special cases) to begin with.

We now state the theorem on the provable guarantee of
our bootstrapping approximation method more formally. But
first we need some definitions.

Consider an optimization problem P on weighted (undi-
rected) graphs1 where a solution is a set S of edges, and
the cost or length of a solution S is the sum of the edge
weights: len(S) =

∑
e∈S w(e). Also let len(G) denote the

sum of all edge weights in a graph G. Let OPT(G) denote
the minimum cost over all solutions to the problem on the
graph G.

Problem P is closed under deletion if deleting an edge from
the graph never increases OPT: i.e., OPT(G− e) ≤ OPT(G)
for any edge e of G. Problem P is closed under contraction
if contracting an edge from the graph never increases OPT:
i.e., OPT(G/e) ≤ OPT(G) for any edge e of G. Problem P
is ω-undoable under deletion if there is a polynomial-time
algorithm that, given a subset X of edges in G and given a
solution S′ for G −X, finds a solution to G with length at
most len(S′)+ω len(X) for some constant ω ≥ 0. Problem P
is ω-undoable under contraction if there is a polynomial-time
algorithm that, given a subset X of edges in G and given
a solution S′ for G/X, finds a solution to G with length at
most len(S′) + ω len(X) for some constant ω ≥ 0.

Define a relative β(δ)-spanner construction for a problem

1In this section, we use the term “graph” for simplicity, but
the framework applies equally well to graphs with additional
structure (in particular, a set of terminal vertices) provided
we can define how this structure is maintained under edge
deletion or contraction (which for terminals is straightfor-
ward).

P to be an algorithm that, given an edge-weighted graph G
in a minor-closed family G, given a solution S to P on G,
and given a constant δ > 0, constructs an edge-weighted
graph G′ ∈ G such that the following two properties hold.

Spanning property: OPT(G) ≤ OPT(G′) ≤ OPT(G) +
δlen(S). Furthermore, any solution S′ to G′ can be
converted in polynomial time into a solution S′′ of G
of length no more than len(S′) + δlen(S).

Shortness property: len(G′) ≤ β(δ) · len(S).

Typically, G′ is a subgraph of G for problems closed un-
der deletion, and this property explains why OPT(G) ≤
OPT(G′). On the other hand, for problems closed under
contraction, G′ is usually the result of contracting certain
edges in G, leading naturally to the same inequality.

The function β(δ) is typically a fixed but exponential func-
tion. However, in rare cases it can rely on n as well. In fact,
our warm-up construction gives a β(δ) that has an O(logn)
factor.

Also note that the above definition is a generalization of
ideas used in previous work, e.g., [26, 14, 9, 6, 5]. In particu-
lar, the upper bound on OPT(G′) is at least (1+δ) OPT(G);
in case the starting solution S were an O(1)-approximate so-
lution, G′ could be constructed to have a solution of length
at most (1 + δ) OPT(G).

We call this construction a relative spanner since unlike
previous work its spanning property can charge to the initial
solution. Therefore, if the starting solution is not constant-
approximate, the relative spanner does not guarantee the
existence of a 1 + ε approximate solution. Nevertheless, we
may drop the qualifier “relative” when it is clear from the
context.

In what follows we show how the relaxed version of the
spanning property is sufficient for obtaining PTASs. In-
tuitively, spanner-based PTAS techniques are used to con-
struct better solutions in each iteration, and finally reach at
the desired solution.

Metatheorem 3 (Bootstrapping Approximation). Any prob-
lem P with the following properties admits a PTAS on graphs
excluding any fixed minor.

1. P has a β(δ)-spanner construction.
2. P is closed and ω-undoable under either deletion or

contraction.
3. P has an α0-approximation algorithm, where α0 ≤

2n
O(1)

. (Typically α0 = O(n).)
4. P has a polynomial-time algorithm, or even a PTAS,

on graphs of constant treewidth.

The resulting PTAS makes O(logα0) calls to the relative
spanner construction routine with δ = O(ε). In particular,

if α0 = nO(1), then this is O(logn) calls. The PTAS calls the
bounded-treewidth algorithm with graphs of treewidth O(ωβ(δ)/ε).
In particular, if the bounded-treewidth algorithm is fixed-
parameter tractable with respect to treewidth, then the PTAS
is efficient, running in f(1/ε)nO(1) time.

We prove Metatheorem 3 in Section 2.

Planar group Steiner spanner.
In conjunction with our novel bootstrapping approxima-

tion approach, we also need to construct a (relative) span-
ner for planar group Steiner tree. In particular, deciding



which terminal in a group is the one to participate in an
optimal solution makes this task much harder than previous
approaches to construct spanners.

Before diving into the discussion for the full relative span-
ner construction, we go over a special case to illustrate some
of the ideas. This warm-up exercise focuses on the case
where each group consists of at most two vertices. Sur-
prisingly, this seemingly benign special case, either, did not
have any PTAS prior to our work. Beside illustrating some
of the ideas in the general algorithm, the treatment of the
special case serves to show why the main algorithm is fairly
complicated.

Theorem 4. There is a relative 2o(δ
−7.5) logn spanner con-

struction for planar group Steiner tree if no group in the
given instance has more than two vertices.

The spanner construction above, though much simpler
than the general case, is still not trivial. We present this
special case partly because it is the cleanest example of
the prize-collecting nature of the problem. After defining
an appropriate submodular potential function, we can ex-
press the problem in the framework of submodular prize-
collecting clustering and take advantage of a submodular
prize-collecting clustering algorithm developed by Bateni et
al. [5]. Unfortunately, such a compact presentation of the
algorithm does not seem to be possible in the general case.
Therefore, in the general spanner construction, instead of
reducing the problem to submodular prize-collecting cluster-
ing, we employ more problem-specific (and more technical)
arguments.

The O(logn) factor in the length of the spanner affects
the running time of the whole algorithm. Due to this fac-
tor, we need to solve instances of planar group Steiner tree
on instances with treewidth bounded by f(1/ε) logn in the
last step of the algorithm. Solving group Steiner tree ex-
actly can be reduced to solving ordinary Steiner tree exactly
by introducing an artificial new terminal for each group and
connecting it to the original terminals with edges of very
large cost (note that this is not an approximation-preserving
reduction). It is not difficult to observe that this transforma-
tion increases treewidth at most by a constant factor if the
terminals of each group lie on the boundary of a face. There-
fore, the last step of the algorithm can be done by solving
instances of Steiner tree on graphs of treewidth f(1/ε) logn.
Steiner tree on graphs of treewidth w can be exactly solved
in time 2O(w) · nO(1) [11, 18], which is nf(1/ε) in our case.
This means that the resulting PTAS is not an efficient PTAS,
i.e., the running time is not of the form f(1/ε)nO(1). (We
emphasize, however, that our algorithm for the general is an
EPTAS.)

The main result of the current paper is based on the fol-
lowing theorem.

Theorem 5. For some function f(δ), there is a relative f(δ)
spanner construction for planar group Steiner tree if groups
g1, g2, . . . , gk correspond to distinct faces f1, f2, . . . , fk of the
input graph.

Starting with an initial solution, we extend it to through
a series of steps into a spanner. We call these intermediate
extensions “prespanners,” as they do not have the spanning
property yet, but hopefully they get closer and closer to
it. To make the proof modular, we formalize a notion of
“spanner extension step,” describing a procedure that takes

a prespanner having certain properties and improves it into
a prespanner having certain other properties. The proof of
Theorem 5 is divided into some number of spanner extension
steps that are independent from each other and relate to
each other only via a well-defined interface.

Hardness for group Steiner forest. Steiner forest is
a generalization of Steiner tree where, instead of connecting
every terminal with a tree, the task is to connect given pairs
of terminals with a forest. This generalization of the problem
can be significantly harder: the solution is not necessary
connected, hence we have to decide in some way which pairs
of terminals are served by which connected component of
the solution. Nevertheless, it was possible to generalize the
PTASs for planar Euclidean Steiner tree to Steiner forest [8,
6, 17]. This raises the obvious question whether our PTAS
for planar group Steiner tree can be generalized to planar
group Steiner forest, that is, where a given list of pairs of
groups have to connected with a forest of minimum cost. We
show that, unlike for the original Steiner tree problem, this is
not the case if groups are involved. With an approximation-
preserving reduction from vertex cover on 3-regular graphs,
we prove that planar group Steiner forest is APX-hard. The
hardness result holds even if the groups are very simple:
each of them consists of a single vertex or the endpoints of
an edge.

Theorem 6. The planar group Steiner forest problem is
APX-hard on planar graphs of treewidth 3, even if the groups
are pairwise disjoint and every group is a vertex or an edge.

2. SPANNER BOOTSTRAPPING: THE PROOF
In this section, we prove Metatheorem 3.
We start with an α0-approximate solution S0, and itera-

tively produce solutions S1, S2, . . . with approximation ra-
tios α1 ≥ α2 ≥ . . . , where the final solution is (1 + ε)-
approximate as desired. The first solution S0 is simply
the output of the α0-approximation algorithm. Let us for
simplicity assume that we have an exact algorithm for the
bounded-treewidth case. At the end, we explain how the
same argument works with a bounded-treewidth PTAS, too.

Given Si, we apply the spanner construction on G with
solution Si, to obtain a graph G′; the parameter δ will be
fixed later. Thus len(G′) ≤ β(δ) len(Si). Let ◦ denote the
operation (deletion or contraction) under which the prob-
lem is closed and ω-undoable. Then we apply deletion de-
composition [15] or contraction decomposition [13] accord-
ingly: for any parameter k ≥ 2, in polynomial time we ob-
tain disjoint edge sets X1, X2, . . . , Xk such that G′ ◦Xj has
bounded treewidth for all j = 1, 2, . . . , k. Then we apply the
bounded-treewidth algorithm to solve the problem P exactly
on G′ ◦Xj for all j = 1, 2, . . . , k. For each such solution T ′j ,
we use undoability to construct a solution S′j to P on G′,
and let S′ be the best solution among them. Next we apply
the spanning property of the spanner construction to S′ to
obtain a solution Si+1 for the original graph G.

The algorithm iterates this process in two phases. The
first phase consists of log2dα0/8e iterations, and sets δ =
1 and k = d4ωβ(δ)e. The second phase consists of one
iteration, and sets δ = 1

2
ε and k = d16ωβ(δ)/εe. The total

number of iterations is thus t = log2dα0/8e + 1. We claim
that the resulting solution St is a (1 + ε)-approximation.

To prove this claim, we compare the approximation factor
αi+1 of the solution Si+1 to the approximation factor αi of



the solution Si. We can rewrite the algorithmic part of the
spanning property algebraically as

len(Si+1) ≤ len(S′) + δlen(Si). (1)

Thus

len(Si+1) ≤ len(S′) + δlen(Si)

by (1) of the spanning property,

= min
j

len(S′j) + δlen(Si)

from definition of S′,

= min
j

[len(T ′j) + ωlen(Xj)] + δlen(Si)

by ω-undoability,

= min
j

[OPT(G′ ◦Xj) + ωlen(Xj)] + δlen(Si)

since bounded-treewidth algorithm is optimal,

≤ min
j

[OPT(G′) + ωlen(Xj)] + δlen(Si)

due to closure under ◦,

= OPT(G′) + ωmin
j

[len(Xj)] + δlen(Si)

≤ OPT(G) + ωmin
j

[len(Xj)] + 2δlen(Si)

by spanning property,

≤ OPT(G) + ω
1

k

∑
j

[len(Xj)] + 2δlen(Si)

because minimum is less than average,

= OPT(G) + ω
1

k
len(G′) + 2δlen(Si)

because decomposition partitions edges into Xj ’s,

≤ OPT(G) + ω
1

k
β(δ)len(Si) + 2δlen(Si)

by shortness property of spanner construction,

≤ OPT(G) +
[
ω

1

k
β(δ) + 2δ

]
len(Si)

= OPT(G) +
[
ω

1

k
β(δ) + 2δ

]
αiOPT(G)

since Si is an αi-approximation,

=
[
1 +

(
ω

1

k
β(δ) + 2δ

)
αi
]
OPT(G).

Therefore, step i reduces the approximation factor from αi
to 1 +

(
ω 1
k
β(δ) + 2δ

)
αi.

For simplicity, suppose we know the value of αi at each
iteration. Then we define the first phase of the algorithm
to be when αi ≥ 8, and set δ = 1

8
and k ≥ 8ω β(δ), to

obtain αi+1 ≤ 1 + 3
8
αi ≤ 1

2
αi. Hence the algorithm exits

this phase after t − 1 = log2dα0/8e rounds. In the second
phase, αt−1 ≤ 8, and we set δ = 1

32
ε and k ≥ 16ω β(δ)/ε.

Thus αt ≤ 1 +
(

1
16
ε + 1

16
ε
)
αt−1 ≤ 1 + 1

8
εαt−1 ≤ 1 + ε.

Therefore St is the desired (1 + ε)-approximation.
In reality, though, we do not know the value of αi during

the algorithm to determine the parameters. Therefore we set
δ = 1

32
ε and k ≥ 16ω β(δ)/ε, which work for both phases

(assuming ε ≤ 1).
If the bounded-treewidth algorithm is only a (1 + γ)-

approximation, then the term (1 + δ) OPT(G) grows to a
factor not exceeding (1 + δ)(1 + γ) OPT(G). Thus we can
simply set δ = γ to one quarter the previous value, and still
obtain a (1 + ε)-approximation.

3. SPANNER CONSTRUCTION
We build on a procedure for constructing spanners, due to

Klein [26] for TSP and Borradaile et al. [9] for Steiner tree,
that is now well-known and has been employed to obtain
several planar PTASs. The Steiner tree spanner construc-
tion crucially depends on having a short tree connecting up
all the terminals. This can be found by any of the known
O(1)-approximation algorithms.

Here for group Steiner tree (or TSP), we need to make
a decision as to which terminal in each group should par-
ticipate in the optimal solution. Notice that, had this been
given to us, the problem would have reduced to Steiner tree.
It suffices to identify and connect up the “correct” terminal
of every group. We can select more than one terminal from
a group as long as the total connection cost is not too large.
On the other hand, we require the guarantee that the chosen
terminals do lead us to a near-optimal solution.

The following is a simple corollary of the said construc-
tions [26, 9] coupled with the above discussion. It essentially
says that we can construct a polynomial-time β(δ)-spanner
for group Steiner tree or group TSP given a tree S that spans
the “correct” terminal in each group. In particular, we say
that S reaches all relevant terminals if a (1+δ)-approximate
group Steiner tree solution exists that only employs the ter-
minals in S.

Theorem 7. We can construct in polynomial time a 2o(δ
−7.5)

spanner given a promising starting point S.

In what follows we demonstrate how to extend an initial
solution in each iteration so that it reaches all relevant ter-
minals. As mentioned before, we first delve into discussing
a special case (where each group has at most two terminals)
to illustrate many of the ideas and challenges. In this case,
we can directly use a technique called PC-Clustering. The
more general case is discussed next and in the appendix,
and it requires several more involved techniques, in partic-
ular many other prize collecting procedures (PC-Clustering
no longer being directly useful).

3.1 Groups with at most two terminals
We present a method to extend a solution so that it reaches

all relevant terminals in the the case when each group may
consist of at most two vertices (but not necessarily on one
face of the graph). We emphasize that we do not even re-
quire to have a planar input graph at this point, though
the next steps of the PTAS (namely the reduction to the
bounded-treewidth case and solving the latter) work only
with extra assumptions on planarity and lying of group ver-
tices on a single face.



Lemma 8. Given an initial solution S to group Steiner tree
(or group TSP), we can find in polynomial time a solution
S′ that reaches all relevant terminals.

Based on a given solution S satisfying all the groups, we
define a submodular function π on the groups. Then we use
this as a penalty (or potential) function to run a (submod-
ular) PC-Clustering [5]. The result, among other things,
is a tree S′ that connects certain terminals in addition to
those in S. The guarantees of PC-Clustering along with the
properties of our submodular penalty function π allows us
to argue that S′ reaches all relevant terminals.

Clearly all terminals for one-terminal groups fall on S.
As for other groups, let us for simplicity assume that ev-
ery other group has exactly one vertex on S—which we call
the “anchor” (vertex or terminal) of the group—and another
one that is not on S—which we denote the “tip” (vertex or
terminal) of the group.

Fix a (not necessarily simple) path µ spanning anchors in
S. Define a binary tree I on the anchors as follows where
each node of the tree corresponding to a subpath of µ and
contains a consecutive subset of anchors. The top-level node
r(I) consists of one interval corresponds to the entire µ, and
contains all anchors. Each of the two nodes at the next level
contains almost half the anchors, and corresponds to the
subpath of µ from the first anchor to the last. Each node
has its own subtree defined recursively in a similar fashion.
Clearly the depth of the tree is logarithmic in the number
of anchors.

Given a subset Y of groups, I(Y ) denotes the nodes in I,
except r(I), that contain the anchor of at least one group in
Y . The width of a node i in I(Y ), denoted w(i) is the length
of the subpath corresponding to the parent of the node. We
define π(Y ) =

∑
i∈I(Y ) w(i).

Lemma 9. The function π is a nonnegative, monotone,
submodular function with an upper bound of O(logm)len(S)
where m is the number of groups. Furthermore, π(A∪B)−
π(B) for disjoint subsets of groups A,B suffices to connect
the anchors of A to those in B. More specifically, there
exists a forest F , spanning anchors of A, of length at most
π(A∪B)−π(B) such that each component of F contains at
least one anchor from B.

Proof. Nonnegativity and monotonicity are trivial from
the definition. That the function is submodular is derived
easily from the diminishing returns property.

Note that at each level of I(Y ), all the subpaths are dis-
joint. Thus, the total width of nodes at one level is at most
len(µ), hence the upper bound given the logarithmic bound
on the depth of I.

It remains to prove the last part of the lemma. Let µ(i)
for a non-root node i of tree I denote the subpath of µ
corresponding to the parent of i in I. We define F =⋃
i∈I(A)\I(B) µ(i), and claim that F satisfies the conditions

set forth in the statement of the lemma. First note that the
length of the forest is no more than π(A ∪B)− π(B). Now
consider an anchor a in A. Let IB(a) denote the node in
I that contains a but no anchor from B; i.e., IB(a) is the
topmost node of I({a}) \ I(B). By definition, the parent of
IB(a) contains not only a but also at least one anchor from
B. Clearly, the subpath of µ corresponding to the parent
of IB(a) is part of the construction of F , hence F satisfies
a.

We invoke the submodular PC-Clustering algorithm due
to [5] where there is a single demand corresponding to each
group—that of connecting its tip to S. Let D denote the
set of these demands. The potential function φ(DY ) for a
subset DY ⊆ D of demands corresponding to groups Y is
set to φ(DY ) = ε−1π(Y ). Below we provide the theorem
summarizing the properties of the procedure as stated in
[4].

Theorem 10. Given an instance (G,D, π), Submodular PC-
Clustering produces in polynomial time a forest F and a sub-
set Dunsat ⊆ D of demands, along with a feasible vector y for
Equations (2)–(4), such that

1. y(Dunsat) = π(Dunsat);
2. F satisfies any demand in Dsat := D \ Dunsat; and
3. len(F ) ≤ 2y(D).∑
S:e∈δ(S)

yS ≤ ce ∀e ∈ E (2)

∑
d∈D

yd ≤ π(D) ∀D ⊆ D (3)

yS,d ≥ 0 ∀d ∈ D, S ⊆ V, |S ∩ d| = 1. (4)

Let F ′ be the union of F and S, and let S′ be the con-
nected component of F ′ containing S. Next we prove the
desired properties of S′.

Lemma 11. The length of S′ is O(ε−1 logm)len(S) where
m is the number of groups.

Proof. The increase in the length going from S to S′ is
at most len(F ). The latter according to the theorem above
is at most twice the sum of the y variables, which is in turn
no more than φ(R), where R is the set of groups. Lemma 9
guarantees this to be bounded by O(ε−1 logm)len(S).

Lemma 12. There exists a near-optimal solution using only
the terminals in S′.

We need the following claim in the proof of the lemma.
The lemma appears in previous work, e.g., [4, Lemma 10.2.3]
restated with the definition of π.

Claim 13. The length of a tree T connecting the tips of a
subset Z of groups to S is at least y(Z).

Proof of Lemma 12. We take the optimal solution and
modify it so that it only uses the terminals on S′ without
increasing its length significantly. Let Z be the subset of
groups whose tips do not lie in S′. Let X ⊆ Z be the sub-
set of such groups whose anchors do not lie on the optimal
solution, hence the optimum uses their tips to satisfy them.
Let Y = Z \ X. Take Dunsat from Theorem 10. By def-
inition X ∪ Y ⊆ Dunsat. We have y(Dunsat) = φ(Dunsat).
Let U = Dunsat \ Y . We have y(U) = y(Dunsat \ Y ) =
y(Dunsat) − y(Y ) ≤ φ(Dunsat) − φ(Y ), where the inequality
follows from (3). The last part of Lemma 9 argues that the
right-hand side term suffices for connecting the anchors of
Dunsat \ Y to the anchors of Y . Note that the anchors of Y
are necessarily part of the optimum, hence this transforma-
tion produces a valid solution using only terminals in S′. To
see the increase in the length is not significant, note that
the left-hand side term, which is an upper bound on the
additional length, is no more than the optimum.

Proof of Lemma 8. The two lemmas above prove that
S′ reaches all relevant terminals.



3.2 Groups with any number of terminals
In the general case, the algorithm to construct such a rel-

ative spanner consists of several involved steps. Following
earlier work, we find it convenient to “cut open” the ini-
tial solution and assume that the initial solution is a path.
Then each group has one or more terminals on the pres-
panner (we call those terminals the anchors) and possibly
some other terminals not on the prespanner (we call those
terminals the tips). The anchors of a group span a subpath
on the prespanner. We divide the groups in a solution into
nonminimal and minimal groups according to whether or
not the subpath spanned by the group contains the sub-
path of some other group. Somewhat counterintuitively, we
prefer nonminimal groups, as there is a simple but surpris-
ingly powerful way of assigning potentials to such groups.
Thus a general goal in the spanner construction is to extend
the prespanner in a way that (after cutting open again the
extended prespanner) more and more groups become non-
minimal. After some number of prize collecting procedures,
we can define a potential function on every group, not only
on the nonminimal ones. The main argument is that there
should be a vertex of the solution close to the anchor of each
minimal group, otherwise the solution contains a path con-
necting a tip of the group to a vertex of the spanner far away
from the anchor of the group. But adding such a path would
make the group nonmimimal, and we would have added such
a path to the prespanner in one of the prize-collecting pro-
cedures.

Having obtained a potential function for every group, we
try to make the task of satisfying the different groups more
independent. Removing the edges of the prespanner from
the solution breaks the solution into a set of trees, which we
call the fragments of the solution. The first difficulty that
we want to overcome is that a fragment of the solution may
reach the tips of more than one nonminimal group. First
we show how to ensure that each fragment of the solution
reaches the tips of at most a constant number of terminals,
and then we reduce this constant to one. In fact, every re-
maining tip is weakly isolated, meaning that there is no way
of connecting the tips of two groups without crossing the
prespanner. We further strengthen this to strongly isolated,
where (roughly speaking) from each tip we can reach only a
consecutive subpath of the spanner. Then the problem we
have to overcome becomes very similar to a situation that
is handled in previous work [9]: given two paths, we have
to find a small number of portals on each of them such that
any true connecting them can be massaged to use only these
portals. Finally, we invoke the known spanner construction
for Steiner tree as a black box on top of our already con-
structed prespanner to construct an actual relative spanner.
Our metatheorem applies these steps a polynomial number
of times to obtain the desired PTAS for planar group Steiner
tree.

To make our proof for the case of groups with any num-
ber of terminals modular, we split the construction of the
spanner into several independent steps. We formalize the
notion of “spanner extension step,” and describe each step
in a separate section. Informally, a spanner extension step
takes a prespanner subgraph satisfying a certain list of prop-
erties, and it produces an new instance with a prespanner
subgraph satisfying another (hopefully more useful) list of
properties. The construction has to satisfy two important
properties: the value of the optimum solution in the original

and the constructed new instance differ only by at most ε
times the total weight of the prespanner and the weight of
the prespanner increases only by a constant factor depend-
ing on ε. Thus if we construct a spanner through a sequence
of spanner extension steps such that the first prespanner
that we started with was a constant-factor approximation
of the optimum solution, then the error introduced during
the spanner extension steps can be made arbitrary small
compared to the value of the optimum. This means that
a 1 + ε approximation of the new instance is sufficient to
obtain a (1 +O(ε))-approximation of the original instance.

Sometimes we need to state that not only the spanner has
certain properties, but there are (almost) optimal solutions
satisfying certain properties. Therefore, we define spanner
extension steps in a way that if the original instance has
a solution satisfying a certain list of properties, then the
new instance has a solution satisfying a certain other list of
properties and its weight is not much larger.

Formally, let P be an optimization problem, where every
instance I contains an edge-weighted graph G (and perhaps
other information, such as list of terminals etc.). We also
assume a weight function λ on the edges (possibly having
parallel edges). Let G be the set of all groups.

Definition 14. A (P1,P2) → (P1′,P2′) spanner extension
step for P is an algorithm A satisfying the following.

1. The input is a value 0 < ε < 1, an instance I of P,
and a subgraph L of the graph G of I such that (I, L)
satisfies property P1.

2. The running time is f(1/ε)nO(1) for some computable
function f , where n is the size of the input instance I.

3. The output is an instance I ′ of P and a subgraph L′ of
the graph G′ of I ′ such that (I ′, L′) satisfies property
P1′, and the following hold:

(a) λ′(L′) ≤ h(1/ε)λ(L) for some computable func-
tion h.2

(b) Given a solution X ′ of I ′, one can find in time

g(1/ε)nO(1) a solution X of I with λ(X) ≤ λ(X ′)
for some computable function g.

(c) There exists a c ≥ 0 such that if I has a solution
X satisfying P2, then I ′ has a solution X ′ satis-
fying P2′ and having λ′(X ′) ≤ λ(X) + cελ(L).

As the running time is f(1/ε)nO(1), the size of the instance

I ′ can be also bounded by f(1/ε)nO(1). We may refer to
function f as the runtime for the transformation, to function
h as the blowup of the spanner, to function g as the recovery
time, and to constant c as the recovery increase.

Lemma 15. If problem P has a (P1,P2)→ (P1′,P2′) span-
ner extension step and a (P1′,P2′) → (P1′′,P2′′) spanner
extension step, then P also has a (P1,P2) → (P1′′,P2′′)
spanner extension step.

Our main goal is to construct an instance (via several
successive spanner extension steps) where the groups have
no tips: every terminal is on the spanner. In this case,
we can invoke the previous work of Borradaile, Klein, and
Mathieu [9], which implies the existence of the following
spanner extension step.

2For a function such as λ : X → Z+, we define λ(X ′) =∑
x∈X′ λ(x) for X ′ ⊆ X the usual way.



Lemma 16 ([9]). There is a (P10,−) → (P11,−) spanner
extension step for planar group Steiner tree, where

[P10]: Every terminal is on L.
[P11]: L = G.

That is, this spanner extension step creates a new in-
stance where the spanner is actually the entire graph. Stan-
dard treewidth-based techniques can be used to solve the
an instance of planar group Steiner tree withing an additive
ελ(G) term of the optimum solution. As it remains true
during the successive applications of the spanner extension
steps that the spanner is a constant-factor approximation of
the optimum, this results in a (1 +O(ε))-factor approxima-
tion.

In the rest of this extended abstract, we give a brief tour
of all the spanner extension steps appearing in our spanner
construction. Fist we define four basic properties P0–P3 that
will be required for some of the spanner expansion steps. We
argue that the instance can be easily modified to achieve
these properties whenever we need them. Then we go on
to define further properties representing the intermediate
goals in our construction; see Figure 1 for an overview. The
detailed description of the spanner extension steps and their
analysis will appear in the full version of the paper.

3.2.1 Property P0: some basic conditions
Property P0 formalizes some basic properties of the pres-

panner that we need in most of the proofs. Formally, a
prespanner L is a subgraph L ⊆ G given in the input such
that every group x ∈ G has at least one terminal on L.
Furthermore, we require the following additional properties
(note that here the spanner L in general is not necessarily a
path):

• If a vertex of group x is on L, then it is a terminal of
x.
• If a vertex v of x is in V (L), then v has no edges outside
E(L) besides the two infinite edges of fx.
• If a vertex v of x is not in V (L), then v has degree at

most 3: it has the infinite edges of fx plus additionally
one more edge.

Given any instance with a subgraph L containing at least
one terminal of each group, it is easy to modify the instance
to satisfy these additional properties.

3.2.2 Property P1: the prespanner is a path
In a large part of the proof, we assume that the prespanner

is a path. The following properties and related definitions,
denoted by P1 formalize the situation that the prespanner
L is a path:

• The prespanner is a path L with endpoints v` and vr.
• We denote by L[a, b] the subpath of L between a and
b and by λ(L[a, b]) is its length.
• The terminals of a group on L are the anchors and the

remaining terminals are the tips.
• There is a special group g0 having v` and vr as ter-

minals, and the terminals of g0 are all that distance 0
from each other.
• There is an edge of weight 0 connecting v` and vr and

every group is inside the cycle formed by L and this
edge.

In previous spanner constructions [26], it was often as-
sumed that the initial solution is a cycle. This can be
achieved using the (by now standard) technique of “cutting
open a tree.” Using similar steps, we can modify the instance
such that P1 holds (see Figure 2).

Let H be an arbitrary subgraph of G having at least one
vertex on V (L). We define span(H) to be the minimal sub-
path of L containing every vertex of V (H)∩V (L). If x ∈ G,
then by a slight abuse of notation, we let span(x) to be
span(fx), where fx is the face whose vertices are terminals
of x. Observe that the planarity of the graph and the con-
nectedness of the groups imply that for every x, y ∈ G, either
span(x) and span(y) are disjoint or one is the subset of the
other. We say that x is minimal if there is no other y ∈ G
such that span(y) ⊂ span(x); otherwise, we say that x in

nonminimal. We denote by
∇

G the set of minimal groups

(intuitively, they are local and compact) and by Ĝ the set
of nonminimal groups (intuitively, they are wide and nest
other groups).

3.2.3 Property P2: Minimal groups have only one
anchor

Suppose that property P0 and P1 hold. With simple mod-
ifications, we can achieve the following without changing
which groups are minimal and which are not:

Every minimal group has exactly one anchor.

Figure 4 shows that this property can be achieved by an
easy modification of the instance.

3.2.4 Property P3: nonminimal groups have exactly
two anchors

Suppose that property P0 and P1 hold. With simple mod-
ifications, we can achieve the following without changing
which groups are minimal and which are not:

Every nonminimal group has exactly two anchors.

This property can be achieved in a way similar to how P2
was obtained, see Figure 4.

3.2.5 Goal 1: Potential functions
The notion of potentials and potential functions will be

crucial for our spanner construction. It is analogous to the
function φ(DY ) used in Section 3.1, with the important dif-
ference that here we define a potential for each group and
the potential of a set of groups is simply the sum of the po-
tentials in the set (whereas the function φ(DY ) was a general
submodular function that was not necessarily modular).

We define the potential of a group x ∈ G with respect
to a solution X as the length of the shortest path P with
V (P ) ⊆ V (L) that connects an anchor of x and a vertex of
X. We say that p : G → Z+ is a potential function compatible
with X if it is true that every x ∈ G has potential at most
p(x) with respect to X.

It turns out that it is not very difficult to define a potential
function for the nonminimal groups in such a way that the
function is compatible with every solution.

Lemma 17. In polynomial time, we can find a function

p : Ĝ → Z+ such that

1. p(Ĝ) ≤ 6λ(L) and
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Achieving Goal 5
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Achieving Goal 6
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Borradaile et al. [9]
Lemma 16

spanner L

P0: basic conditions
P1: prespanner is a path
P2: every minimal group has only one anchor
P3: every nonminimal group has exactly two anchor

(P0+ P1+ P2+ P3,−)

(P0+ P1+ P2+ P3+ P4,P5)
P4: instance is equipped with a potential function
P5: almost-optimal solution compatible with the potential
function

(P0+ P1+ P3+ P4,P5+ P6) P6: at most 5 groups per fragment

(P0+ P1+ P3+ P7,−) P7: tips are weakly isolated

(P0+ P1+ P3+ P7+ P8,−) P8: minimal groups have no tips

(P0+ P9,−) P9: tips are strongly isolated

(P10,−) P10: every terminal is on L

(P11,−) P11: G = L

Figure 1: Overview of all spanner extension steps.



(a) (b)

(c) (d)

g0
vrv`

Figure 2: Cutting open a tree. (a) A tree contain-
ing one terminal from each group. (b) An Eulerian
tour of the tree. (c) Cutting open the tree along the
Eulerian tour by duplicating vertices and connect-
ing them with edges of weight 0 (shown in blue).
(d) Making the cycle a path by introducing an ad-
ditional terminal to the group g0, and introducing
an edge of weight 0 between v` and vr (shown by
dashed lines).

x

span(x)

x

span(x)

Figure 3: Decreasing the number of anchors of a
minimal group to one.

2. for every solution X and every x ∈ Ĝ, group x has an
anchor that is at distance at most p(x) from X on L.

The main observation in the proof is the following. Con-

sider a nonminimal group x ∈ Ĝ such that span(x) is min-
imal, that is, span(x) does not contain the anchor of any
other nonminimal group, but it does contain an anchor of a

minimal group y ∈
∇

G (as x is nonminimal). Now the only
way for a solution X to reach the anchor or a tip of y is to
enter the area enclosed by x and span(x), and this is only
possible via span(x). Thus subpath span(x) of L is “safe” in
the sense that every solution X contains at least one vertex
of span(x). Thus to define the function p, all we need to do

is to find, for every x ∈ Ĝ a subpath of L that includes both
an anchor of x and such a “safe” subpath of P . Somewhat
surprisingly, this can be done in a way that every edge of L is

used only twice, which results in the bound p(Ĝ) = O(λ(L))
(in some cases, we need a simple additional argument for

those groups x ∈ Ĝ for which there is a unique maximal

y ∈ Ĝ with span(y) ⊆ span(x)). Figure 5 gives an example
how these paths can be defined.

Defining the potential function for the minimal groups
turns out to be significantly more difficult. In fact, we do
not construct a potential function that is compatible with

x

span(x)

x

span(x)

Figure 4: Decreasing the number of anchors of non-
minimal groups to two without changing span(x).

every solution: we achieve only the weaker goal of construct-
ing a potential function that is compatible with some almost-
optimal solution. The following lemma states this as a span-
ner extension step.

Lemma 18. There is a (P0 + P1 + P2 + P3,−) → (P0 +
P1 + P2 + P3 + P4,P5) spanner extension step, where

[P2]: Every minimal group has only one anchor.
[P3]: Every nonminimal group has exactly two anchors.
[P4]: L is equipped with a potential function
[P5]: Solution X is compatible with the potential function

3.2.6 Goal 2: At most 5 groups per fragments
Let X be a solution. We may imagine X as a collection

of trees attached to L, plus some subpaths of L itself. The
following definitions are useful for this interpretation:

Definition 19. Let G be a graph, H be a subgraph of G, and
let T be a subtree of G. We say that T is normal with respect
to H if V (T )∩V (H) 6= ∅ and every vertex v ∈ V (T )∩V (H)
has degree 1 in T . We say that a tree T is singly attached
to H if T is H-normal and V (T ) ∩ V (H) = 1 holds.

Definition 20. Let G be a graph, H a subgraph of G, and
T a subtree of G. A fragment of T with respect to H is a
maximal normal subtree T ′ of T (i.e., no proper supergraph
of T ′ is normal).

Observe that the fragments of T with respect to H are
pairwise edge disjoint and every edge of T \ E(L) is in one
of the fragments.

A particular difficulty of the proofs is that certain local
parts of the solution may be important for than one group:
an L-fragment may contain the tips of more than group.
This has to be taken into account in charging arguments,
where we are trying to charge a value related to a group on
an L-fragment reaching a tip of that group. Some of these
charging arguments work only if there are at most a con-
stant number of groups per L-fragment. Our next goal is to
achieve this. We modify the solution that every L-fragment
contains the tips of at most 5 groups. The modification ex-
ploits the fact that the instance is equipped with a potential
function.

Lemma 21. There is a (P0 + P1 + P2 + P3 + P4,P5) →
(P0+P1+P3+P4,P5+P6) spanner extension step, where

[P2]: Every minimal group has only one anchor.
[P3]: Every nonminimal group has exactly two anchors.
[P4]: L is equipped with a potential function
[P5]: Solution X is compatible with the potential function
[P6]: Every L-fragment of the solution contains tips of a

most 5 groups.

3.2.7 Goal 3: terminals are weakly isolated
To further simplify the instance, we would like to ensure

that each L-fragment of the solution can contain the tip of
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at most one group. We ensure this in a very strong way: we
modify the instance such that there is a path disjoint from
the prespanner between tips of two groups.

Definition 22. We say that a terminal v of group x is
weakly isolated in a graph H if there is no path Q with
V (H) ∩ V (Q) = ∅ connecting v with a terminal of a group
x′ 6= x.

See Figure 6 for examples. Note that it is possible that
some of the tips of a group are weakly isolated, and some
others are not.

Using the assumptions that the instance is equipped with
a potential function and that every L-fragment contains the
tips of at most 5 groups makes it significantly easier to mod-
ify the instance in such a way that every group is weakly
isolated.

Lemma 23. There is a (P0 + P1 + P3 + P4,P5 + P6) →
(P0 + P1 + P3 + P7,−) spanner extension step, where

[P3]: Every nonminimal group has exactly two anchors.
[P4]: L is equipped with a potential function
[P5]: Solution X is compatible with the potential function
[P6]: Every L-fragment of the solution contains tips of a

most 5 groups.
[P7]: Every tip is weakly isolated in L.

3.2.8 Goal 4: Minimal groups have no tips
If the tips of the minimal groups are weakly isolated, then

we can modify the instance in a way that the minimal groups
have no tips. First, we extend the prespanner in a way that
the tips are isolated in the following sense.

Definition 24. We say that a terminal v of group x is
strongly isolated in a graph H if there is a subpath Px of the
boundary of x going through v and a subpath PH of H with
the same endpoints as Px such that PH and Px form a cycle
with no terminal strictly in its interior.

See Figure 6 for examples. Note that strongly isolated im-
plies weakly isolated and every terminal in V (H) is strongly
isolated in H. Also, if a terminal is strongly isolated in H,
then it is strongly isolated in every supergraph of H.

Our goal is to obtain an instance where every tip is strongly
isolated. The following theorem invokes previous work of
Borradaile et al. [9] on building spanners and allows us to
mark a bounded number of strongly isolated terminals as
“relevant” in the sense that there is an almost-optimal solu-
tion that reaches only these terminals. Then we can ignore
the rest of the terminals and extend the prespanner in a way
that all these terminals are reached. This way, we achieve
our main goal: every terminal is on the prespanner.

Theorem 25. Consider a planar embedded graph H whose
outer face consists of two paths PL and Pg (a subpath of
a group face g) where the latter path is formed of infinite
edges only. (The two paths have the same endpoints.) Let
Z denote the set of vertices on Pg, and assume each vertex
of Z may have at most one edge not on Pg. Then, for any
given ε > 0, in polynomial time, we can find a set Z′ ⊆ Z
of vertices such that the following hold.

1. |Z′| = f(ε−1).
2. For any subtree T of H connecting Z to PL, there ex-

ists a subtree T ′ of H such that

(a) T ′ ∩ Z′ 6= ∅,
(b) T ′ ∩ PL ⊇ T ∩ PL, and
(c) len(T ′) ≤ len(T ) + ε len(PL).

Applying Theorem 25 on each face of the graph, it is not
difficult to show that the prespanner can be extended in a
way that every relevant strongly isolated terminal is reached:

Lemma 26. Suppose that P1 holds. Let S be the set of ter-
minals that are strongly isolated with respect to L. Then we
can compute a supergraph L′ of L with λ(L′) = f(1/ε)λ(L)
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Figure 6: The black lines show the prespanner L. The tips of groups x1, x2, x5 are all weakly isolated (note
that groups x6 and x7 have no tips, and the edge uv, which is not in L, makes it impossible to connect a
tip of x1 and tip x2 with a path internally disjoint from L. The tips of groups x1, x2, x5 are not strongly
isolated, but all the tips of groups x8 and x9, and three tips of x4 are strongly isolated.

such that the following holds: if there is a solution X, then
there is a solution X∗ with λ(X∗) ≤ λ(X) +O(ελ(L)) such
that X∗ has no vertex in S \ V (L′).

Putting together, we get a spanner extension step that
first makes every tip of every minimal group strongly iso-
lated and then uses Lemma 26 to extend the spanner in a
way that reaches all the relevant tips. Then the remaining
tips of the minimal groups can be removed, and we achieve
that the minimal groups have no tips.

Lemma 27. There is a (P0 + P1 + P3 + P7,−) → (P0 +
P1 + P3 + P7 + P8,−) spanner extension step, where

[P2]: Every minimal group has only one anchor.
[P3]: Every nonminimal group has exactly two anchors.
[P7]: Every tip is weakly isolated in L.
[P8]: The minimal groups have no tips.

3.2.9 Goal 5: Every tip is strongly isolated
Achieving property P7 is an important milestone, but it

does not make the problem completely trivial yet. Even if
an L-fragment contains a tip t of only one group, it can be
attached to L at several points, and the choice of the tip t
can affect what the most efficient way of connecting these
points is. Our next goal is to extand the prespanner in a way
that every tip of every nonminimal group becomes strongly
isolated.

Lemma 28. There is a (P0 + P1 + P3 + P7 + P8,−) →
(P0 + P9,−) spanner extension step, where

[P3]: Every nonminimal group has exactly two anchors.
[P7]: Every tip is weakly isolated in L.
[P8]: The minimal groups have no tips.
[P9]: Every tip is strongly isolated in L.

3.2.10 Goal 6: Handling strongly isolated terminals
The next step of the algorithm finally reaches our main

goal: the groups have no tips, that is, every terminal is
on the prespanner. Formally, we prove the existence of the
following spanner extension step, which is just a straightfor-
ward application of Lemma 26. Note that in this step, we
do not assume P1, i.e., L is not necessarily a path.

Lemma 29. There is a (P0+P9,−)→ (P0+P10,−) span-
ner extension step, where

[P9]: Every tip is strongly isolated in L.
[P10]: Every terminal is on L.
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