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Abstract

We consider a setting where a platform must dynamically allocate a collection of goods
that arrive to the platform in an online fashion to budgeted buyers, as exemplified by online
advertising systems where platforms decide which impressions to serve to various advertisers.
Such dynamic resource allocation problems are challenging for two reasons: (a) the platform
must strike a balance between optimizing her own revenues and guaranteeing fairness to her
(repeat) buyers and (b) the problem is inherently dynamic due to the uncertain, time-varying
supply of goods available with the platform. We propose a stochastic approximation scheme akin
to a dynamic market equilibrium. Our scheme relies on frequent re-solves of an Eisenberg-Gale
convex program, and does not require the platform to have any knowledge about how the goods
arrival processes evolve over time. The scheme fully extracts buyer budgets (thus maximizing
platform revenues), while at the same time provides a 0.64 approximation of the proportionally
fair allocation of goods achievable in the offline case, as long as the supply of goods comes from
a wide family of (possibly non-stationary) Gaussian processes.

1. Introduction
The problem of allocating a finite supply of resources, or alternatively goods, to a population of
budget-constrained customers, is ubiquitous to a swathe of applications in domains ranging from
e-commerce, online advertising and on-demand cloud computing to humanitarian logistics. The
specific model we are concerned with in this paper can be described succinctly as follows: a stream
of goods of types indexed by i arrive in an online fashion to a platform over a finite time interval.
The platform seeks to allocate each arriving good to a customer belonging to a set indexed by j.
Customer j has budget Bj,0 and utility uij for a unit of a good of type i. We assume that goods
are perishable in the sense that allocation decisions must be made immediately or the current good
is lost. The platform has two controls: (a) the allocation xij specifying how much of the inventory
of goods of type i is given the agent j and (b) the unit price pi at which this allocation occurs.

In this work, we focus on finding a market-clearing allocation of the goods that is “fair” to
the platform’s customers. While the bulk of the literature on resource allocation is driven by the
objective of maximizing platform revenue (for instance the network revenue management problem
from Gallego and Van Ryzin [1997]), we believe fairness is a crucial system objective in two kinds
of contexts: (a) those where the platform is explicitly mandated to optimize fairness, such as one
might encounter in healthcare or humanitarian settings and (b) those where the platform is a profit
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maximizer, but due to the repeated nature of the interactions with its customers, the platform
must ensure fairness to its customers in order to attract their repeat business over the long term.
Such repeated interaction settings are common in online advertising, where advertisers re-negotiate
the terms of their advertising campaigns with the ad network even on a daily basis, as is the case
with Google’s AdWords system.
Offline versus online resource allocation. As we shall see in the sequel, fairness in resource
allocation has already been studied in deterministic settings. However, in many practical applica-
tions, the inventory of goods available to the platform across the entire time horizon is a highly
uncertain quantity. For example, the rates at which impressions with certain features arrive to
an ad network are sensitive to ‘shocks’ due to news or social trends – such dynamics are highly
dimensional, non-stationary and inherently difficult to model and forecast. Moreover, decisions
are without recourse as impressions must be served their ads in the timeframe of several millisec-
onds. We call this setting the online problem, as opposed to the offline problem where we assume
clairvoyant access to the inventory of goods. The present work is an attempt to bridge the gap be-
tween our understanding of fairness schemes for the offline and online versions of resource allocation
problems.

Below, we give an example of an application that fits our model of fair resource allocation:
Allocation of sponsored search or display ads. Here, the decision maker is an ad platform who
has access to a stream of user requests, or impressions, and seeks to monetize this inventory by
delivering it to various advertiser campaigns. The campaigns typically have time horizons ranging
from one day to several weeks. Advertisers set a maximum budget for the campaign to spend
and a set of bids for certain impression types; these parameters remain valid for the duration
of the campaign. At the end of the time horizon, the campaign may get renegotiated with the
platform and renewed. Thus, there is a repeated sequence of interactions between the platform
and its advertisers, with each interaction being an allocation problem in itself. In light of this, the
platform must balance between two distinct goals: (a) extracting advertiser budgets as platform
revenues, while (b) guaranteeing fair allocations of impressions to the advertisers to encourage them
to return and commit budgets to new campaigns over future interactions, as well as attracting new
advertisers to the platform encouraging healthier, more efficient competition. We remark that
several advertising platforms offer a swathe of analytics tools to help their customers optimize their
campaigns with the goal of fostering marketplace growth.
Fairness. In this paper, we focus on weighted proportional fairness, a fairness metric which sits
at the midway point between the two extremes described above, being less averse to inequality
than max-min fairness, while at the same time more averse than utilitarian efficiency. This fairness
notion has been studied extensively, see, e.g., Bertsimas et al. [2011, 2012], Nash Jr [1950].

We define weighted proportional fairness in the following way: for a weights vector w ∈ RJ
+, an

allocation of utilities U ∈ RJ
+ is proportionally fair if

J∑
j=1

wj
U ′j − Uj
Uj

≤ 0, for all other feasible utility vectors U′ ∈ RJ
+.

Market equilibrium. Pricing and allocating goods in a marketplace with multiple budgeted
buyers has been studied extensively as a market equilibrium problem starting with the work of
Walras. We focus here on the linear utility case (i.e., the utility for customer j is Uj =

∑I
i=1 uijxij),

which is known as Fisher market equilibrium. A Fisher market equilibrium is a pair (x,p), where
x specifies a vector of allocations of goods to customers and p the unit price for each good type,
with the following properties: (a) The market clears both in terms of the inventory of goods and
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buyer budgets and (b) The optimal allocation x is such that it maximizes the individual utility of
customers given prices p.

The customer utilities garnered via a Fisher allocation implement a proportionally fair allocation
with weights given by the customer budgets. Hence, Fisher equilibrium provides a mechanism to
arrive at fair allocations while simultaneously clearing the market. The second property suggests
that a Fisher allocation is fair in an additional sense: the market clearing prices p are such that, if
each customer was allowed to pick their own selfish allocation at prices p, they would choose exactly
the centralized allocation x. From an implementation standpoint, in the case that the supply of
goods is known, the pair (x,p) is efficiently computable Devanur et al. [2008], Jain [2007], Ye [2008],
for example by the celebrated Eisenberg-Gale convex program Eisenberg and Gale [1959].

Having posited an offline market equilibrium mechanism that fills the fairness and budget
clearance conditions we were looking for at the onset, we ask ourselves how to extend it in settings
where the inventory of goods evolves dynamically and unpredictably over time. In the following, we
present an implementable scheme that can be used in this online setting and that inherits (possibly
approximately) the market clearance and fairness properties of static Fisher equilibrium.

1.1. Main Contributions
Online scheme for proportional fairness. We present an online algorithm that, in the presence
of uncertainty in the rates at which goods of various types arrive, produces a series of Fisher
market allocation and price pairs. The scheme works by solving a static Eisenberg-Gale (EG)
convex program at each of a discrete set of times within the horizon; each re-solve assumes that the
current rate Λt at which inventories of goods arrive to the platform remains constant throughout
time, and plugs that rate into an EG program to yield a myopic allocation price pair (xt,pt). We
show that our algorithm satisfies the following properties:

1. Almost sure budget consumption: the algorithm is market clearing even in the presence
of uncertainty in the inventory of goods. We show that as the number of resolves becomes
large, our algorithm is guaranteed to always clear the market as long as the sample paths of
the goods arrival process are continuous.

2. Constant factor proportional fairness guarantee versus offline optimum: assuming
that {Λt} belongs to a natural family of Gaussian processes with concave volatility structure,
we provide a constant 0.64 bound on the fairness loss our scheme incurs, relative to the
optimal proportionally fair allocation that is achievable with clairvoyant knowledge of {Λt}’s
sample path.
This contrasts results in adversarial models, where a logarithmic approximation is the best
possible [Azar et al., 2010]. We emphasize that (a) our bound applies to processes within a
large parametric family and of arbitrarily large volatility and (b) the family consists of non-
stationary processes that are inherently difficult to learn: in fact, one can view our stochastic
model as in-between an i.i.d./random permutation model and an adversarial one.
Furthermore, we then relax the condition of concave volatility structure and consider a generic
family Gaussian processes, to which we obtain a parametrized lower bound depending on the
degree of convexity of volatility over time.

3. Asymptotically optimal proportional fairness guarantee: additionally, in regimes
when the volatility of the {Λt} process goes to 0, the gap becomes 0; in other words, our
scheme is optimal when the platform has reliable forecasts.
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These are the first constant factor guarantees for online resource allocation where the objective is
to maximize proportional fairness, as well as for online versions of Fisher market equilibrium.

2. Model
Consider a platform who, over a finite selling season [0, T ], receives an inventory stream of goods
of I different types. At time t, a good of type i arrives with rate Λi,t ≥ 0 which can only be
used instantaneously and cannot be stored for future use, but only sold immediately to a set of J
customers. Each customer j is endowed with a budget Bj,0 > 0 at time zero. Customer j gains
utility uij ≥ 0 from consuming one unit of good type i, where uij > 0 for some i ∈ {1, · · · , I}. At
each time point t ∈ [0, T ), the platform determines the fraction, xij,t, of good type i’s instantaneous
supply allocated to customer j, and the unit price, pi,t, for a good of type i.

We assume here that customers are truthful in their declarations of utilities and budgets, but
remark that there is a body of literature on game-theoretic equilibria in Fisher markets as well as
other market equilibrium models, such as Adsul et al. [2010], Brânzei et al. [2014], Mehta et al.
[2014] and Cole and Tao [2015].
Resource dynamics. Here, we present the goods arrival process which is central to our model.
We assume that {Λt} is a reflected Gaussian process (GP), defined as:

Definition 1. We call a process {Λt} a reflected Gaussian process if

1. Λi,t = |Λ̄i,t|, where Λ̄i,t is a Gaussian process with continuous sample paths.

2. E
[
Λ̄i,t

]
= λi > 0.

3. The variance of Λ̄i,t, denoted as σ2
i,t, is non-decreasing in t.

In the above, we interpret λi as a deterministic forecast of good type i’s arrival rate, and σ2
i,t as

a measure of the forecast uncertainty of good type i’s arrival rate at time t. The third assumption
that σ2

i,t is non-decreasing in t reflects the intuition that the forecast for an event that will happen
far from now is more uncertain than the forecast for an event that will happen in a near future.
We denote by GP the family of all such processes.

Many frequently used processes are GP. As one example, we consider a generalized moving
average process {Λt}, defined as

Λi,t = |Λ̄i,t| =
∣∣∣∣λi +

∫ t

s=0
φi(t− s)dZi,s

∣∣∣∣ (1)

where λi > 0, φi(·) ∈ C1 and dZi,s is an increment of Brownian motion. It is evident that this
process satisfies the first two conditions above. For this process, following from Ito’s isometry, we
have σ2

i,t =
∫ t
s=0 φi (t− s)2 ds. Therefore, this process satisfies the third condition above, i.e., σ2

i,t is
non-decreasing in t. Therefore, generalized moving average processes are a special case of GP.

We define the following subset of GP, which is a natural class of Gaussian processes to which
we will devote special attention in the sequel:

Definition 2. We call a process {Λt} a regular reflected Gaussian process, or rGP, if {Λt} ∈ GP
and furthermore, σ2

i,t is concave in t for all i ∈ {1, · · · , I}.

4



To develop some intuition about this process class, it is useful again to refer to the example
of generalized moving average processes. Recall that for such processes, σ2

i,t =
∫ t
s=0 φi (t− s)2 ds.

Therefore, any such process which additionally satisfies the condition that |φi(·)| is non-increasing
is rGP. This monotonicity condition has the interpretation that shocks generated today have
a diminishing influence on the future values of the process; essentially, the process eventually
‘forgets’ shocks that have happened very far in the past. The following special moving average
processes satisfy this condition: (1) the Wiener process with φi(t) = σi for arbitrary σi > 0; (2)
the Ornstein-Uhlenbeck (OU) process with mean λi, the initial good arrival rate Λi,0 = λi, and
φi(t) = σi exp(−βit) for arbitrary σi > 0, and βi > 0.

Definition 3. For k > 0, we call a process {Λt} an k-th order reflected Gaussian process, or GP(k),
if {Λt} ∈ GP and furthermore σ2

i,t

σ2
i,t′
≤ max

{(
t
t′
)k
, 1
}

for all i ∈ {1, · · · , I}, t, t′ ∈ [0, T ].

We denote by rGP and, respectively, GP(k) the family of all regular GP and respectively, k-th
order GP processes.
Allocation and pricing policies. Define Λt , {Λs : s ∈ [0, t]} and (xt,pt) , {xij,s, pi,s : ∀i, j, s ∈
[0, t)}. Define a filtration {Ft : t ∈ [0, T )} where Ft , σ(Λt,xt,pt,B0). We consider a family of
dynamic allocation and pricing policies Π. Each policy π , {xπij,t, pπi,t : ∀i, j, t ∈ [0, T )} ∈ Π consists
of the platform’s allocation and pricing decisions xπij,t and pπi,t. We say π is feasible if it is adapted
to the filtration {Ft : t ∈ [0, T ]} and satisfies:

xπij,t ≥ 0, ∀i, j, t,
J∑
j=1

xπij,t ≤ 1 ∀i, t,

xπij,t = 0 if Bj,t = 0 ∀i, j, t, pπi,t ≥ 0 ∀i, t.

Under a policy π ∈ Π and conditional on the sample path of {Λt}, customer j’s remaining

budget at time t is: Bj,t = Bj,0 −
∫ t
s=0

(∑I
i=1 p

π
i,sΛi,sxπij,s

)
ds.The total utility customer j garners

over the entire selling season is: Uπj =
∫ T
t=0

(∑I
i=1 uijΛi,txπij,t

)
dt.

2.1. Fair Allocations
As alluded in the introduction, we seek to maximize the budget-weighted proportional fairness of
the utilities allocated to customers. Let us define, for any vectors U ∈ RJ

+ and w ∈ RJ
+ with

||w||1 ,
∑J
j=1wj = 1, the quantity

F (U,w) ,
J∏
j=1

U
wj

j . (2)

Further, for any policy π ∈ Π, define the expected weighted proportional fairness measure as

FAIRπ(B0, T,λ0) , E
[
F

(
Uπ,

B0
||B0||1

)]
,

where the expectation is with respect to {Λt}t≥0. We seek a policy π ∈ Π that admits a competitive
ratio versus the best achievable offline fairness.
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It is worth discussing the relationship between the above definition of the proportional fair-
ness, F (U ,w), and another widely adopted definition of weighted proportional fairness given by
ln (F (U ,w)) =

∑J
j=1wj lnUj . The reason we use the exponentiated fairness metric is to ensure

that the performance ratio of our policies is well-defined. Specifically, in the sequel we will use the
ratio of the fairness achieved under a heuristic policy π to the optimal fairness level to evaluate the
fairness performance of our proposed policy π. To make sure this ratio is meaningful, the fairness
measure must be non-negative, which is not guaranteed under the standard definition.
The platform’s fairness optimization problem. The platform’s problem is to find a policy
π∗ , {x∗ij,t, p∗i,t,∀i, j, t} that achieves

FAIRπ∗(B0, T,λ0) = sup
π∈Π

FAIRπ(B0, T,λ0) , FAIR∗(B0, T,λ0).

There are several challenges to finding such an optimal fairness policy.
Robustness to mis-specification of {Λt}. Computing the optimal fairness policy requires the

platform to build up a forecast model of the multi-dimensional process governing the arrival of
goods. However, due to its highly unpredictable nature, the platform may not have the ability
to do so. Hence, the allocation and pricing policy obtained from solving an optimization problem
which assumes a wrong forecast might lead to a poor outcome.

Heavy computational burden. Even assuming that a forecast of the goods arrival process {Λt}
was available, it is still necessary to solve a DP to find the optimal policy. The curse of dimen-
sionality makes it practically infeasible to compute the optimal fairness policy even for small scale
problems.

Due to the aforementioned challenges, in the rest of this paper, as opposed to seeking opti-
mality, we consider heuristic policies that can both avoid the above difficulties and achieve good
approximations of the best fairness outcome.

3. Benchmark: Offline Problem with Known Goods Inventory
As noted before, a big challenge is unpredictability in the volume of goods that will arrive to
the platform. In this section, we consider an offline benchmark problem in which the platform
clairvoyantly and precisely knows, at time t = 0, the volume of goods to arrive throughout the
entire time horizon. We study this offline problem for two reasons. First, the optimal fairness
policy in the offline problem will motivate our construction of heuristic policies for the online
problem. Second, the optimal fairness value in the offline problem serves as an upper bound on the
optimal fairness value in the online problem and can, therefore, be used as a benchmark to evaluate
the performance of heuristic policies that we will propose later for the online case.

We begin by introducing the following auxiliary static optimization problem f(B,S) with B ∈
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RJ>0 and S ∈ RI>0 being the (perfectly predicted or known) supply vector:

max
{xij}

lnF
(
U ,

B

||B||1

)
, max

{xij}

j∑
j=1

Bj
||B||1

· lnUj

s.t. Uj =
I∑
i=1

uijSixij ∀j, s.t. Uj =
I∑
i=1

uijSixij ∀j,

J∑
j=1

xij ≤ 1 ∀i,
J∑
j=1

xij ≤ 1 ∀i,

xij ≥ 0 ∀i, j, xij ≥ 0 ∀i, j. (3)
We abuse our notation to denote the optimal value of this program as f(B,S). We denote the
optimal solution as {xij(B,S),∀i, j} and the optimal dual variables associated with constraints∑J
j=1 xij ≤ 1 as {p̃i(B,S), ∀i}. We define pi(B,S) , p̃i(B,S)

Si
· ||B||1, which can be interpreted as

the ‘physical’ price per unit of good of type i, and is simply a renormalization of the p̃i(B,S) dual
variables. We also note that (3) is better known as the Eisenberg-Gale convex program [Eisenberg
and Gale, 1959] that solves for a Fisher market equilibrium.

Under the clairvoyance assumption, solving the above auxiliary static optimization problem
yields a (stationary) allocation x(B0,

∫ T
t=0 Λtdt) and p(B0,

∫ T
t=0 Λtdt) (hereafter written in a com-

pact form as (x,p)(B0,
∫ T
t=0 Λtdt)) which maximizes the proportional fairness level while also clear-

ing the market. This is a standard result for Fisher equilibrium in the offline problem.

4. Re-Optimization Policy with Continuous Reviews for Online Problem
In this section, we propose and analyze a heuristic policy for the online version of our resource
allocation problem. We propose a policy which simply repeatedly solves, at each point of time,
for the optimal policy given the assumption that the prevailing supply rate Λt remains constant
until the end of the season (i.e. the outstanding supply is Λt · (T − t)). Formally, πre ∈ Π is a
re-optimization policy with continuous updates if it satisfies the following conditions:

xπ
re

ij,t , xij(Bt,Λt · (T − t)), ∀i, j, t,
pπ

re

i,t , pi(Bt,Λt · (T − t)), ∀i, t.

The re-optimization policy πre is appealing for several reasons:

1. The information the platform needs to update her control at time t only consists of prevailing
goods arrival rates Λt and customers’ remaining budgets Bt. Therefore, the platform does
not need to keep track of any history of past good arrivals or decisions. In addition, the
scheme requires no supply forecast. For instance, if the supply processes are generalized
moving average processes, then the platform does not need to forecast the deterministic
trend λi or the ‘shock’ term weights φi(·). Therefore, the platform avoids the risk of building
a misspecified forecast model. In contrast, one must know the future sample path of {Λt} to
solve the program in Section 3.

2. The basic computational block is solving a convex optimization problem with linear con-
straints, for which efficient algorithms exist (see Boyd and Vandenberghe [2004]). Imple-
menting the re-optimization policy additionally requires the platform to frequently re-solve
convex programs, which is computationally tractable.
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4.1. Performance Analysis of The Re-Optimization Policy with Continuous Reviews
This subsection is devoted to analyzing the performance of the re-optimization policy πre.
Market clearance. First, we characterize the dynamics of each customer’s budget consumption
and each good type’s utilization.

Theorem 1. The re-optimization policy πre clears the markets, namely,

1. Budgets are consumed smoothly: Bj,t = Bj,0
T−t
T , ∀j, t.

2. All goods inventory is consumed:
∫ T
t=0 Λi,t

(∑J
j=1 x

πre

ij,t

)
dt =

∫ T
t=0 Λi,tdt, ∀i.

Additionally, our policy must guarantee good fairness performance. We establish a constant
uniform lower bound on the fairness performance of our re-optimization policy for reflected Gaussian
processes.

Theorem 2. Under the re-optimization policy πre,

1. For all regular reflected Gaussian processes {Λt} ∈ rGP,

FAIRπre(B0, T,λ0)
FAIR∗(B0, T,λ0) ≥ 0.64.

2. For all k-th order reflected Gaussian processes {Λt} ∈ GP(k),

FAIRπre(B0, T,λ0)
FAIR∗(B0, T,λ0) ≥ 1.3

k
ln
(
k

2 + 1
)
.

3. For all reflected Gaussian processes such that σi,t = 0 for all i ∈ {1, · · · , I} and t ∈ [0, T ],

FAIRπre(B0, T,λ0)
FAIR∗(B0, T,λ0) = 1.

We pause to emphasize some of the features of this result:

1. Rate volatility robustness: The upper bounds from Parts 1 and 2 of the theorem are obtained
without imposing any condition on the absolute scale of volatility of the goods arrival rate
process; this indicates that our re-optimization policy is robust across the entire family of
processes we examine, no matter how volatile they are. Moreover, for the natural rGP family,
the bound is uniform. Lastly, as per Part 3, the algorithm will precisely match the offline
optimal fairness as the volatility of {Λt} tends to 0.

2. Correlation structure robustness: The uniform upper bound is obtained without imposing
any condition on the correlation among different good types.

3. Almost sure market clearance: Our policy is simultaneously guaranteed to clear the market
even in the case that the size of market is uncertain, and does not need to assume that {Λt}
is from the rGP family.

4. Practicality: Recall that implementing our re-optimization policy simply requires the platform
to frequently implement myopic resolves for the static optimal fairness. The myopic nature of
this algorithm makes it implementable for any type of rate process and places no forecasting
burden on the platform.
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