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ABSTRACT
Maximum coverage and minimum set cover problems—here
collectively called coverage problems—have been studied
extensively in streaming models. However, previous re-
search not only achieve suboptimal approximation factors
and space complexities, but also study a restricted set-
arrival model which makes an explicit or implicit assumption
on oracle access to the sets, ignoring the complexity of read-
ing and storing the whole set at once. In this paper, we ad-
dress the above shortcomings, and present algorithms with
improved approximation factor and improved space com-
plexity, and prove that our results are almost tight. More-
over, unlike most of previous work, our results hold in a
more general edge-arrival model.

More specifically, consider an instance with n sets, to-
gether covering m elements. Information arrives in the form
of “edges” from sets to elements (denoting membership) in
arbitrary order.

1. We present (almost) optimal approximation algo-
rithms for maximum coverage and minimum set cover
problems in the streaming model with an (almost) op-

timal space complexity of Õ(n); i.e., the space is inde-
pendent of the size of the sets or the size of the ground
set of elements. These results not only improve the
best known algorithms for the set-arrival model, but
also are the first such algorithms for the more powerful
edge-arrival model.

2. In order to achieve the above results, we introduce a
new general sketching technique for coverage functions:
One can apply this sketching scheme to convert an α-
approximation algorithm for a coverage problem to a
(1−ε)α-approximation algorithm for the same problem
in streaming model.

3. We show the significance of our sketching technique by
ruling out the possibility of solving coverage problems
via accessing (as a black box) a (1 ± ε)-approximate
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oracle (e.g., a sketch function) that estimates the cov-
erage function on any subfamily of the sets. Finally, we
show that our streaming algorithms achieve an almost
optimal space complexity.



1. INTRODUCTION
Maximum coverage and minimum set cover problems—

here collectively called coverage problems—are among the
most fundamental problems in optimization and computer
science. Coverage problems have a variety of machine-
learning and data-mining applications (for examples in data
summarization and web mining, see [14, 1, 12, 38, 9]).
Solving such problems has become increasingly important
for various real-world large-scale data-mining applications
where due to the sheer amount of data, either the computa-
tion has to be done in a distributed manner [14, 17, 11, 35,
38, 27, 37], or the data is presented and needs to be analyzed
in a stream [9, 6, 44, 41, 19, 13].

These problems have been explored extensively in the lit-
erature, but despite development of several scalable algo-
rithms, the existing approaches still suffer from a few short-
comings. First of all, most previously studied models make
an explicit or implicit assumption on having oracle access
to each set in its entirety. This assumption, in particular,
ignores the computational complexity of reading the whole
set, or computing the marginal impact of adding a subset
to the solution (i.e., computing union and intersection of
family of subsets). For instance, in the streaming setting,
this assumption is implied in the extensively studied set-
arrival model [44, 19, 18, 13]. Such models are less realistic
since all the information of each set need to be gathered
together. The set-arrival setting directly translates to the
vertex-arrival setting in graph streaming1, which is less in-
teresting than the popular edge-arrival setting [4, 5, 7, 15,
21, 30, 31]. Secondly, current streaming algorithms often
achieve suboptimal approximation guarantees compared to
the offline optimum or do not have the best space complex-
ities in terms of the number of sets in the input.2

In this paper, we aim to address the above issues. We
develop streaming algorithms that achieve optimal approxi-
mation guarantees as well as optimal space complexities for
coverage problems without any oracle-access assumptions.
Moreover, our algorithm works in the (more general) edge-
arrival streaming model. At the core of our analysis lies a
simple, yet subtle sketching technique. In order to demon-
strate the power of this technique, we show why natural
sketching approaches do not work well. We also demon-
strate that oracle access to a noisy estimator for the cover-
age function is not sufficient. We first present more formal
definitions before elaborating on these results.

1.1 Preliminaries

Coverage Problems.
We study three related coverage problems. The setting

includes a ground set E of m elements, and a family S ⊆ 2E

of n subsets of the elements (i.e., n = |S| and m = |E|).3 The

1Modeled as a bipartite graph where vertices on one side
corresponds to the sets and vertices on the other side corre-
sponds to elements. See Preliminaries for a formal definition.
2We focus on the regime where the number of the element
(i.e., the size of the ground set) is significantly larger than
the number of sets, hence the importance of having bounds
in terms of the number of sets rather than elements.
3There are two separate series of work in this area. We use
the convension of the submodular/welfare maximization for-
mulation [8], whereas the hypergraph-based formulation [44]
typically uses n,m in the opposite way.

coverage function C is defined as C(S) = | ∪U∈S U | for any
subfamily S ⊆ S of subsets. In the k-cover problem, given a
parameter k, the goal is to find k sets in S with the largest
union size. We sometimes use Optk to denote the size of the
union for the optimum solution. In the set cover problem,
the goal is to pick the minimum number of sets from S such
that all elements in E are covered. We also study a third
problem: In the set cover with λ outliers problem4, the goal
is to find the minimum number of sets covering at least a
1− λ fraction of the elements in E .

Coverage problems may be modeled as a bipartite graph
G, where S corresponds to one part of the vertices, and E
corresponds to the other part. A vertex representing the set
S ∈ S has |S| edges in G, one to each element i ∈ S. For
simplicity, we assume that there is no isolated vertex in E .
For a subset S of vertices in a graphG, let Γ(G,S) denote the
set of neighbors of S. When G is the graph corresponding
to the original coverage instance, we have C(S) = |Γ(G,S)|
if S is a subfamily of the sets S.

In the offline setting, a simple greedy algorithm achieves
1 − 1

e
approximation for k-cover and logm approximation

algorithm for the set cover problem.5 Moreover, improving
these approximation factors are impossible unless NP has
slightly superpolynomial time algorithm [22].

Streaming models.
In the streaming model, we focus on the so-called edge-

arrival model as opposed to the more studied set-arrival
(aka vertex-arrival) model. In the former, edges arrive one
by one, so we get to know about the set-element membership
relations one at a time, whereas in the latter, sets arrive
and bring with them a list of their elements. The number
of passes allowed for processing the data is crucial and may
change the nature of the problem.

The (1± ε)-approximate oracle..
We say Cε is a (1±ε)-approximate oracle to coverage func-

tion C if, given a subfamily of sets, it gives us an estimate
of their union size within 1± ε precision. In other words, Cε
estimates the coverage function C on any subfamily of the
sets as a black box; i.e., for any subset S ⊆ S, we have

(1− ε)Cε(S) ≤ C(S) ≤ (1 + ε)Cε(S).

1.2 Related work
Coverage problems have been studied extensively in the

context of set-arrival models [6, 44, 41, 19, 13]. Most of
these give suboptimal approximation guarantees. In par-
ticular, Saha and Getoor [44] provide a 1

4
-approximation

algorithm for k-cover in one pass using Õ(m) space. The
same technique gives a Θ(logm) approximation algorithm

for set cover in Θ(logm) passes, using Õ(m) space. On the
hardness side, interestingly, Assadi et al. [6] show that there
is no α-approximation one-pass streaming algorithm for set
cover using o(nm/α) space. Demaine et al. [18] provide (for
any positive integer r) a 4r logm-approximation algorithm

for the set cover problem in 4r passes using Õ(nm1/r + m)

4This is sometimes called the (1− λ)-partial cover problem
in the literature.
5Unless otherwise specified, we use the wide-spread con-
vension for approximation ratios: factors larger than one
for minimization problems and factors smaller than one for
maximization problems.



space6. Recently, Har-Peled et al. improves this result
and provide a p-pass O(p logm)-approximation algorithm in

Õ(nmO(1/p) +m) space6. Indeed, all the above results hold
only for the set-arrival model.

Often in the graph streaming problems, while the size of
the input is Õ(|E|) for a graph G(V,E), the solution size
may be as large as Ω(|V |). The best hope then is to find the

solution in Õ(|V |) space. Algorithms fitting this description
are called semi-streaming [39], and many graph problems
have been studied in this setting [2, 3, 20, 23, 24, 32, 33,
34]. On the other hand, the extensive work on edge-arrival
streaming [4, 5, 7, 15, 21, 30, 31] had not (prior to our owrk)
studied coverage problems.

1.3 Results and techniques
As our main result, we address the aforementioned short-

comings of existing algorithms for coverage problems. These
results are summarized in Table 1. This paper is the first
to study the problem in the edge-arrival model, and present
tight results for these problems.

1.3.1 Streaming results
We present almost tight streaming algorithms for coverage

problems. The following theorem states our main results
formally.

Theorem 1.1. In the edge-arrival streaming model, for any
arbitrary ε ∈ (0, 1], there exist

• (See Thm 3.1) a single-pass (1− 1
e
− ε)-approximation

algorithm for k-cover using Õ(n) space;

• (See Thm 3.3) a single-pass (1+ε) log 1
λ

-approximation

algorithm for set cover with λ outliers using Õλ(n)
space; and

• (See Thm 3.4) a p-pass (1 + ε) logm-approximation

algorithm for set cover using Õ(nm
O( 1

p
)

+m) space.

The above are the first such results for coverage prob-
lems in the streaming edge-arrival model. Moreover, they
improve the approximation factor of previously known re-
sults for the set-arrival model [44, 41, 19, 13]. (However, in
certain cases, the space complexities may be incomparable,
say, Õ(n) versus Õ(m).7) In fact, our result for stream-
ing set cover gives an exponential improvement over De-
maine et al. [18] on both approximation factor and number
of rounds given the same space. See Table 1 for comparison
to previous work. Recently, Har-Peled et al. (Theorem 2.6
in [25]) provide a p-pass O(p logm)-approximation algo-

rithm in Õ(nmO(1/p)+m) space in the set-arrival model. No-
tice that our results for streaming set cover provide a better
approximation factor—i.e., (1+ε) logm versus O(p logm)—
in the same space and number of passes, while handling the
more general edge-arrival model.

On the hardness side, we show that any 1
2

+ ε-
approximation streaming algorithm for k-cover requires
Ω(n) space. This holds even for streaming algorithms with
several passes.

6The space bounds claimed in [18, 25] assume m = O(n),
hence stated differently.
7Indeed, either m or n may be larger in practice [16]. See
also Footnotes 2 and 6.

Theorem 1.2. Any 1
2

+ε-approximation multi-pass stream-
ing algorithm for k-cover requires Ω(n) space in total.

In a simultaneous and independent work, McGregor and
Vu [36] present a single-pass 1 − 1/e − ε approximation al-
gorithm for the k-cover problem in the streaming setting
with Õ(n) space, using a different approach: They directly
analyze the behavior of the greedy algorithm on a spe-
cific noisy sketch, while we provide a sketch that translates
any α-approximation algorithm for k-cover to an (α − ε)-

approximation streaming algorithm using Õ(n) space.

1.3.2 Sketching technique
The main technique at the heart of our results is a power-

ful sketching to summarize coverage functions. As its main
property, we show that any α-approximate solution to k-
cover on this sketch is an (α − ε)-approximate solution to
k-cover on the original input with high probability; see The-
orem 2.7. Interestingly, this sketch requires only Õ(n) space.
Our sketch is fairly similar to `0 sketches [16], which are es-
sentially defined to estimate the value of coverage functions;
see Appendix C for a formal definition. Indeed, one may
maintain n instances of the `0 sketch, and estimate the value
of the coverage function of a single feasible solution of size k
with high probability. However, having

(
n
k

)
different choices

for a solution of size k leads to a huge blow-up on the failure
probability of at least one such solution. In Appendix C, we
show a straightforward analysis to approximate k-cover us-
ing `0 sketches with Õ(nk) space, which is quite larger than
our sketch.

All the algorithms presented here construct Õ(1) inde-
pendent instances of the sketch and then solve the problem
without any other direct access to the input. The simplicity
of our sketch enables its efficient construction and fast im-
plementation of the resulting algorithms. Interestingly, this
technique provides almost tight approximation guarantees.
We remark that all the algorithms presented in this work
have success probabilities 1 − 1

n
; i.e., they may fail to pro-

duce the claimed solution with probability 1
n

. For simplicity
we do not repeat this condition elsewhere.

Finally, in an accompanied paper, we also show how to
apply this to distributed models, and design scalable dis-
tributed algorithms for covering problems. There we also
confirm the effectiveness of this algorithm empirically on
real data sets [10].8

1.3.3 A (1± ε)-approximate oracle is not sufficient
There are several sampling or sketching techniques that

can be used to develop a (1 ± ε)-approximate oracle Cε to
the coverage function. One might hope that a black-box
access to such an oracle could be used as a subroutine in
developing approximation algorithms with good approxima-
tion guarantees. Here, we show that this is not possible.

Theorem 1.3. Any α-approximation algorithm for k-cover
via oracle Cε requires exp

(
Ω(nε2α2 − logn)

)
queries to the

oracle.

In particular, for any constant ε > 0, there is no
polynomial-time n−0.49 approximation algorithm for k-cover
given a (1±ε)-approximate oracle Cε. This improves upon a
similar hardness result for submodular functions [26]—and

8We decided to remove this part of the paper due to space
constraints, and focus on the streaming applications.



Problem Credit # passes Approximation Space Arrival

k-cover [44] 1 1/4 Õ(m) set

k-cover [9] 1 1/2 Õ(n+m) set

k-cover Here 1 1− 1/e− ε Õ(n) edge

Set cover w. outliers [19, 13] p O(min(n
1
p+1 , e

− 1
p )) Õ(m) set

Set cover w. outliers Here 1 (1 + ε) log 1
λ

Õλ(n) edge

Set cover [13, 44] p (p+ 1)m
1
p+1 Õ(m) set

Set cover [18] 4r 4r logm Õ(nm
1
r +m) set

Set cover [25] p O(p logm) Õ(nm
O( 1

p
)

+m) set

Set cover Here p (1 + ε) logm Õ(nm
O( 1

p
)

+m) edge

Table 1: Comparison of results in streaming models. Note that all our results for edge arrival model also
hold for the set arrival model.

not for coverage functions. Our proof technique here might
be of independent interest. (See details in Appendix 5.)

In order to prove Theorem 1.3, first we define a problem
called k-purification for which we show that any randomized

algorithm requires δ exp
(
Ω( ε

2k2

n
)
)

oracle queries to succeed
with probability δ. In a k-purification problem instance, we
are given a random permutation of n items, with k gold and
n − k brass items. The types of individual items are not
known to us. We merely have access to an oracle Pureε(S)
for S ⊆ [1, n] defined as{

0 if k|S|
n
− ε

(
k|S|
n

+ k2

n

)
≤ Gold(S) ≤ k|S|

n
+ ε

(
k|S|
n

+ k2

n

)
,

1 otherwise,

where Gold(S) is the number of gold items in S. The goal
in this problem is to find a set S such that Pureε(S) = 1.
The hardness proof is then based on a reduction between
k-purification and k-cover.

1.4 Organization
We next present the core idea behind our sketching tech-

nique and then explain our algorithms in Section 3. Due to
space constraints, most proofs and discussions appear in the
appendix. In particular, we present in the appendix our neg-
ative result for the black-box usage of (1 ± ε)-approximate
oracles.

2. SKETCHING FOR COVERAGE PROB-
LEMS

In this section we present a sketch H≤n to approximate k-
cover. Specifically, we show that any α-approximate solution
to k-cover on H≤n is an α − O(ε)-approximate solution on
the input graph, with high probability (see Theorem 2.7).

Crucially H≤n uses only Õ(n) space. In order to define and
prove the properties of H≤n, we introduce two intermediary
sketches Hp and H ′p, where p ∈ [0, 1] is a parameter to be
fixed later on.

In this section, we define the sketch in mathematical terms
and establish its desirable properties. Then in the following
section, we discuss the intricacies of building and using it in
the streaming model.

Let h be a hash function mapping elements E to real num-
bers in [0, 1]. First we throw away from the bipartite graph
G any element whose hash value exceeds p. This constructs
Hp. In Lemma 2.3 we show that, for sufficiently large p, any

α-approximate solution to k-cover on Hp is an α − O(ε)-
approximate solution on G, with high probability. Unfortu-
nately, the number of edges in Hp may be Ω(nk).

Next we enforce an upper bound (defined below in terms
of n, k, ε) on the degree of elements in Hp, by arbitrarily
removing edges as necessary. This constructs H ′p. Again for
a sufficiently large choice of p, any α-approximate solution
to k-cover on H ′p is an α−O(ε)-approximate solution on G,
with high probability. Interestingly, if we select p wisely, H ′p
requires only Õ(n) space. However, this p depends on the
value of the optimum solution and may not be accessible to
the algorithm while constructing the sketch. To resolve this
issue, we define H≤n with a similar structure as H ′p, such

that it always has Õ(n) edges (see Definition 2.1). We re-
mark that this conceptual description can be turned into effi-
cient implementations in several computational frameworks.
Next comes the formal definitions of our sketch.

Let us overload the notation h(.) such that h(e), for an
edge e, denotes the value of h on the endpoint of e in E . For
a fixed parameter p, we define Hp to be the subgraph of G
induced by all vertices in S and the vertices in E with h less
than p. In other words, Hp contains an edge e if and only if
h(e) ≤ p. Let H ′p be a maximal subgraph of Hp such that the

degree of the vertices of H ′p in part E is at most n log(1/ε)
εk

; as
necessary we throw away edges arbitrarily. Below we define
H≤n(k, ε, δ′′) based on H ′p. The former is the sketch used in
all our algorithms.

Definition 2.1. For simplicity of notation, we set δ =
δ′′ log log1−εm. Let p∗ be the smallest value such that the

number of edges in H ′p∗ is at least 24nδ log(1/ε) logn

(1−ε)ε3 . No-

tice that p∗ is a function of the randomness in the hash
function. Remark that the number of edges in H ′p∗ is at

most 24nδ log(1/ε) logn

(1−ε)ε3 + n ∈ Õ(n). We denote H ′p∗ by

H≤n(k, ε, δ′′), and drop the parameters from H≤n(k, ε, δ′′)
when it is clear from the context. See Algorithm 1.

We argue that, for sufficiently large p, the quantity
1
p
|Γ(Hp, S)| is a good estimate for C(S). This is formalized

below.

Lemma 2.2. Pick 6δ′

ε2Optk
≤ p ≤ 1, and let S be an arbitrar-

ily subset of S such that |S| ≤ k. With probability 1 − e−δ
′



Figure 1: Left figure is an example of Hp and the right figure is an example of H ′p. In both figures, we have
p = 0.5. The number below each vertex is its hashed value. Solid edges are those included in the sketch and
dotted edges are the rest of the edges in the graph.

Algorithm 1 H≤n(k, ε, δ′′)

Input: An input graph G, k, ε ∈ (0, 1], and δ′′.
Output: Sketch H≤n(k, ε, δ′′).

1: Set δ = δ′′log log1−εm.
2: Let h be an arbitrary hash function that uniformly and independently maps E in G to [0, 1].
3: Initialize H≤n(k, ε, δ′′) with vertices S of G, and no edge.

4: while number of edges in H≤n(k, ε, δ′′) is less than 24nδ log(1/ε) logn

(1−ε)ε3 do

5: Pick v ∈ E of minimum h(v) that is still not in H≤n(k, ε, δ′′).

6: if degree of v in G is less than n log(1/ε)
εk

then
7: Add v along with all its edges to H≤n(k, ε, δ′′).
8: else
9: Add v along with n log(1/ε)

εk
of its edges, chosen arbitrary, to H≤n(k, ε, δ′′).

we have ∣∣∣∣1p |Γ(Hp, S)| − C(S)

∣∣∣∣ ≤ εOptk. (1)

In the following lemma we relate the approximate solu-
tions on Hp and G.

Lemma 2.3. Pick 6kδ logn
ε2Optk

≤ p ≤ 1. All α-approximate

solutions on Hp are (α−2ε)-approximate solutions to the k-
cover problem on G with probability 1−e−δ. Simultaneously

for any set S ⊆ S such that |S| = k, we have
∣∣∣ 1p |Γ(Hp, S)|−

C(S)
∣∣∣ ≤ εOptk.

Proof. Set δ′ = kδ logn. Lemma 2.2 states that for an
arbitrary S ⊆ S of size at most k, we have with probability
1− e−kδ logn, ∣∣∣1

p
|Γ(Hp, S)| − C(S)

∣∣∣ ≤ εOptk.

Note that there are
(
n
k

)
different sets S of size k. By

the union bound, with probability 1 −
(
n
k

)
e−kδ logn ≥ 1 −

nke−kδ logn = 1− e−δ, we have for all such choices∣∣∣1
p
|Γ(Hp, S)| − C(S)

∣∣∣ ≤ εOptk. (2)

Let Optk be the optimum solution on G and let S be the
solution obtained from the α-approximation algorithm Alg
when run on Hp. Applying Inequality (2) to Optk and S,
we simultaneously have∣∣∣∣1p |Γ(Hp,Optk)| − Optk

∣∣∣∣ ≤ εOptk (3)

and ∣∣∣∣1p |Γ(Hp, S)| − C(S)

∣∣∣∣ ≤ εOptk. (4)

In addition, since S is an α-approximate solution on Hp we
have

|Γ(Hp,Optk)| ≤ 1

α
|Γ(Hp, S)|. (5)

Inequalities (5) and (3) together ensure with probability 1−
e−δ that

αOptk −
1

p
|Γ(Hp, S)| ≤ αεOptk.

Combining the above with Inequality (4), we obtain

αOptk − C(S) ≤ αεOptk + εOptk ≤ 2εOptk.

This means that S is an (α− 2ε)-approximation to k-cover
on G as desired.

The following lemma relates the solutions on H ′p and Hp.

Lemma 2.4. Pick arbitrary 0 ≤ p ≤ 1 and 1 ≤ k ≤ n. Any
α-approximate solution of k-cover on H ′p is an α(1 − ε)-
approximate solution on Hp.

Proof. Let OptH and OptH′ be subsets of S with size
k that maximize |Γ(Hp,OptH)| and |Γ(H ′p,OptH′)|, re-
spectively. Remark that H ′p is a subgraph of Hp, hence
|Γ(H ′p, S)| ≤ |Γ(Hp, S)| for any S ⊆ S. Later we show
that there exists a set R of size k such that |Γ(H ′p, R)| ≥
(1 − ε)|Γ(Hp,OptH)|. Thus, for an α-approximate solution



S on H ′p, we have

|Γ(Hp, S)| ≥ |Γ(H ′p, S)| H ′p ⊆ Hp,
≥ α|Γ(H ′p,OptH′)| S is α-approximate,

≥ α|Γ(H ′p, R)| definition of OptH′ ,

≥ α(1− ε)|Γ(Hp,OptH)|.

To prove the existence of a suitable R, we follow a prob-
abilistic argument, producing a randomized set R∗ of size k
such that E[|Γ(H ′p, R

∗)|] ≥ (1− ε)|Γ(Hp,OptH)|.
We construct R∗ by removing εk sets from OptH uni-

formly at random, and adding εk sets from S uniformly
at random. Note that each element in Γ(Hp,OptH) with

degree at most n log(1/ε)
εk

in Hp appears in Γ(Hp, R
∗) with

probability 1 − ε, hence in Γ(H ′p, R
∗). Now let us consider

a high-degree element u—one with degree at least n log(1/ε)
εk

in Hp, i.e., degree exactly n log(1/ε)
εk

in H ′p. The probability
that u is not included in any of the εk randomly added sets
is at most(

1−
n log(1/ε)

εk

n

)εk
=

(
1− log(1/ε)

εk

)εk

=

(
1− log(1/ε)

εk

) εk
log(1/ε)

log 1
ε

≤
(

1

e

)log 1
ε

= ε.

Therefore, each vertex in Γ(Hp,OptH) exists in Γ(H ′p, R
∗)

with probability at least 1 − ε, proving the claim
E[|Γ(H ′p, R

∗)|] ≥ (1− ε)|Γ(Hp,OptH)|.

In the following two lemmas, we argue that maintaining
the solution in the reduced-degree subgraph H ′p does not
require too much memory.

Lemma 2.5. Pick arbitrary C ≥ 1 and let p = 6Ckδ logn
ε2Optk

.

With probability at least 1− e1−δ, we have

max
S⊆S:|S|=k

|Γ(H ′p, S)| ≤ 12Ckδ logn

ε2
.

Lemma 2.6. Pick arbitrary 0 ≤ p ≤ 1 and 1 ≤ k ≤ n, and
let m′p denote the number of edges in H ′p. We have

m′p
εk

2n log(1/ε)
≤ |Γ(H ′p,OptH′)|.

Proof. Let OptH′ = arg maxS |Γ(H ′p, p)|. There is a set
v ∈ OptH′ such that |Γ(H ′p,OptH′)| − |Γ(H ′p,OptH′ − v)| ≤
|Γ(H′p,OptH′ )|

k
, i.e., the marginal effect of v is at most a 1

k
fraction of the total value of |Γ(H ′p,OptH′)|. Notice that
by optimality of OptH′ , replacing v with any other set does
not increase the union size. Thus, for any vertex v′ ∈ S
the number of neighbors of v′ in E \Γ(H ′p,OptH′) is at most
|Γ(H′p,OptH′ )|

k
. Therefore, the number of edges between S and

E \ Γ(H ′p,OptH′) does not exceed n
|Γ(H′p,OptH′ )|

k
.

On the other hand, the degree of the elements in

Γ(H ′p,OptH′) is at most log(1/ε)n
εk

, hence the number
of edges between S and Γ(H ′p,OptH′) does not exceed

|Γ(H ′p,OptH′)|
n log(1/ε)

εk
. Therefore, one can bound the total

number of edges in H ′p as follows.

m′p ≤ n
|Γ(H ′p,OptH′)|

k
+ |Γ(H ′p,OptH′)|

n log(1/ε)

εk

≤
∣∣∣Γ(H ′p,OptH′)

∣∣∣ · n
k

(
1 +

log(1/ε)

ε

)
≤
∣∣∣Γ(H ′p,OptH′)

∣∣∣ · n
k
· 2 log(1/ε)

ε
.

We obtain by reordering

m′p
εk

2n log(1/ε)
≤ |Γ(H ′p,OptH′)|.

The following theorem relates the approximate solutions
on H≤n and G.

Theorem 2.7. Let δ′′ ∈ [1,∞) and k ∈ [1, n] be two ar-
bitrary numbers. Any α-approximate solution to k-cover on
H≤n is an α− 12ε approximation solution on G, with prob-

ability 1− 3e−δ
′′

.

Proof. Pick p ≥ 6kδ logn
ε2Optk

. By Lemma 2.4, any α-

approximate solution on H ′p is an (α − ε)-approximate so-

lution on Hp with probability 1 − e−δ. Moreover, we know
from Lemma 2.3 that any (α − ε)-approximate solution on
Hp is an (α− 3ε)-approximate solution on G with probabil-
ity 1 − e−δ. Therefore, any α-approximate solution on H ′p
is an (α − 3ε)-approximate solution on G with probability
1− 2e−δ.

Let us set p′ = 6kδ logn
ε2Optk

and p0 = 1
m
, p1 = 1

m(1−ε) , p2 =
1

m(1−ε)2 , . . . , pµ = 1, where µ = O(logm). Indeed, there is

some i such that p′ ≤ pi ≤ 1
1−εp

′. Remark that we set δ =

log(log1−εm)δ′′. We may assume without loss of generality
that Lemmas 2.3, 2.4 and 2.5 all hold for every pj with
j ≥ i since union bound ensures this outcome happens with
probability at least

1− 3 log1−εm · e
δ = 1− 3 log1−εm exp[log(log1−εm)δ′′]

= 1− 3eδ
′′
.

Let p∗ be (a random number) such that p∗ ≥ 1
1−ε

6kδ logn
ε2Optk

.

Remark that, since p∗ ≥ 1
1−εp

′, there is some (random num-

ber) j such that p′ ≤ pj ≤ p∗ ≤ pj+1 =
pj

1−ε . Thus,∣∣∣∣Optk −
1

pj
Opt(H ′pj )

∣∣∣∣ ≤ 3εOptk, (6)

and similarly,

3εOptk ≥
∣∣∣∣Optk −

1

pj+1
Opt(H ′pj+1

)

∣∣∣∣
=

∣∣∣∣Optk −
1− ε
pj

Opt(H ′pj+1
)

∣∣∣∣
≥ (1− ε)

∣∣∣∣Optk −
1

pj
Opt(H ′pj+1

)

∣∣∣∣− εOptk,

which, assuming ε ≤ 1
5
, gives

5εOptk ≥
∣∣∣∣Optk −

1

pj
Opt(H ′pj+1

)

∣∣∣∣ . (7)

Combining (6) and (7) yields∣∣∣∣ 1

pj
Opt(H ′pj+1

)− 1

pj
Opt(H ′pj )

∣∣∣∣ ≤ 8εOptk. (8)



The inequalities pj ≤ p∗ ≤ pj+1 implies H ′pj ⊆ H ′p∗ ⊆
H ′pj+1

, hence

Γ(H ′pj , S) ≤ Γ(H ′p∗ , S) ≤ Γ(H ′pj+1
, S) for any set S,

(9)

and in turn,

Opt(H ′pj ) ≤ Opt(H ′p∗) ≤ Opt(H ′pj+1
). (10)

Combining (8) and (10) gives

1

pj
Opt(H ′pj+1

)− 1

pj
Opt(H ′p∗) ≤ 8εOptk. (11)

Now suppose S is an α-approximate solution on H ′p∗ . We
have

C(S) + εOptk

≥ 1

pj+1
|Γ(Hpj+1 , S)| Lemma 2.3,

≥ 1

pj+1
|Γ(H ′pj+1

, S)| H ′pj+1
⊆ Hpj+1 ,

≥ 1

pj+1
|Γ(H ′p∗ , S)| by (9),

≥ α 1

pj+1
Opt(H ′p∗) definition of S,

= α(1− ε) 1

pj
Opt(H ′p∗)

≥ α(1− ε)[ 1

pj
Opt(H ′pj+1

)− 8εOptk] from (11),

≥ α 1

pj+1
Opt(H ′pj+1

)− α8ε(1− ε)Optk

≥ α 1

pj+1
Opt(H ′pj+1

)− α8εOptk

≥ α 1

pj+1
Opt(H ′pj+1

)− 8εOptk since α ≤ 1,

≥ αOptk − 11εOptk
= (α− 11ε)Optk,

that is, any α-approximate solution on H ′p∗ is an (α− 12ε)-
approximate solution on G.

Finally we argue that p∗ ≥ 1
1−ε

6kδ logn
ε2Optk

for H ′p∗ =

H≤n. We set C = 1
1−ε in Lemma 2.5 to

obtain maxS⊆S:|S|=k |Γ(H ′p′′ , S)| ≤
12kδ
1−ε logn

ε2
, where

p′′ = 1
1−ε

6kδ logn
ε2Optk

. Thus, H ′p∗ contains H ′p′′ if

maxS⊆S:|S|=k |Γ(H ′p∗ , S)| ≥
12kδ
1−ε logn

ε2
. On the other hand

if we set m′p∗ ≥ 24nδ log(1/ε) logn

(1−ε)ε3 in Lemma 2.6, we get

|Γ(H ′p∗ ,OptH′)| ≥ m
′
p∗

εk

2n log(1/ε)

≥ 24nδ log(1/ε) logn

(1− ε)ε3
· εk

2n log(1/ε)

=
12kδ
1−ε logn

ε2
.

The following lemma provides a bicriteria bound on the
coverage of solutions in H≤n, where k′ ≤ k is the size of
the set cover on G. This lemma will be useful in obtaining
results for set cover and set cover with outliers.

Lemma 2.8. Let k′ be the size of the minimum set cover on
the input graph G, and let k = ξk′. There exists a solution
of size k′ on H≤n(k, ε, 1) that covers at least 1− ξε fraction
of the elements in H≤n(k, ε, 1).

3. THE STREAMING SETTING
Indeed, with no time constraint, one can use `0 sketches

and give a 1 − ε approximation streaming algorithm for k-
cover in Õ(nk) space; see Appendix C. This simple stream-
ing algorithm constructs a (1± ε)-approximate oracle to the

value of the coverage function, using Õ(nk) space. One
can use this algorithm and try all solutions of size k to
find a 1 − 2ε approximate solution of k-cover. However,
as Theorem 1.3 states, using this oracle and without any
further assumptions, there is no polynomial time n−0.5+ε-
approximation algorithm for k-cover. In addition, the space
used by this algorithm may be quite large for large values of
k.

In this section, we improve the algorithm provided in Ap-
pendix C and give a 1− 1

e
−ε-approximation one-pass stream-

ing algorithm for k-cover, using Õ(n) space. This is done by
first constructing H≤n in the streaming setting and then
providing efficient algorithms that only access the sketch
H≤n. Using the same technique, we give a (1 + ε) log 1

λ
approximation one-pass streaming algorithm for set cover
with outliers, using Õλ(n) space. Besides, for any arbitrary
r ∈ [1, logm], we give a (1 + ε) logm approximation r-pass

streaming algorithm for set cover, using Õ(nmO(1/r) + m)
space. Interestingly, the update times of all our algorithms
are Õ(1).

On the hardness side we show in Appendix 4 that any 1
2
+ε

approximation streaming algorithm for the k-cover problem
requires Ω(n) space. This rules out the existence of 1

2
+ ε

approximation parametrized streaming algorithms for the k-
cover problem and shows that the space of our algorithm is
tight up to a logarithmic factor.

Next we show how to construct H≤n in the streaming set-
ting. Note that to define H≤n we map (via a hash function)
each element to a number in [0, 1] independently. Such a

mapping requires Õ(m) random bits. However, we use a
simple equivalent random process to construct H≤n using

Õ(|H≤n|) random bits, where |H≤n| is the number of edges
in H≤n.

Let p∗ be the probability corresponding to H≤n. Remark
that the number of elements v with h(v) ≤ p∗ is at most
|H≤n|, i.e., at most equal to the number of edges in H≤n.
Note that, if we know that the hash value of an element is
greater than p∗, we can simply remove that element. Thus,
at the beginning we iteratively sample |H≤n| elements with-
out replacement, and assume that this sequence is indeed
that of the first |H≤n| elements ordered by their hashed

value. This process requires only Õ(|H≤n|) random bits.
Next we describe how to use the sketch to solve each of

the three problems: k-cover, set cover, and set cover with
outliers. As a result, we provide tight and almost tight
streaming algorithms for k-cover, set cover, and set cover
with outliers.

The greedy algorithm for k-cover iteratively selects a ver-
tex that increases the valuation function f the most and
adds it to the solution. Let Greedy(k,G) denote the set
of k vertices picked by the greedy algorithm when run on
input graph G. It is known that the Greedy is a 1 − 1

e



Algorithm 2 Streaming algorithm to compute H≤n(k, ε, δ′′)

Input: An input graph G, k, ε ∈ (0, 1], and δ′′.
Output: Sketch H≤n(k, ε, δ′′).
Initialization:

1: Set δ = δ′′log log1−εm.

2: Pick 24nδ log(1/ε) logn

(1−ε)ε3 + n log(1/ε)
εk

element from E uniformly at random and let Π be a random permutation over these

elements.
3: Initialize H≤n(k, ε, δ′′) with vertices S of G, and no edge.

Update edge (u, v):

1: if v is not sampled in Π then
2: Discard (u, v).

3: else if degree of v in G is n log(1/ε)
εk

then
4: Discard (u, v).
5: else
6: Add (u, v) to H≤n(k, ε, δ′′).

7: while number of edges in H≤n(k, ε, δ′′) is more than 24nδ log(1/ε) logn

(1−ε)ε3 + n log(1/ε)
εk

do

8: Let w be the last element in Π.
9: Remove w from Π.

10: Remove w from H≤n(k, ε, δ′′).

approximation algorithm [40]. In addition, we know that
C(Greedy(k log 1

λ
, G)) ≤ (1− λ)Optk(G).

Theorem 3.1. For any ε ∈ (0, 1] and any graph G, Al-
gorithm 3 produces a (1 − 1

e
− ε)-approximate solution to

k-cover on G with probability 1 − 1
n

. The number of edges

in the sketch used by this algorithm is Õ(n).

Lemma 3.2. For arbitrary k′, ε′ ∈ (0, 1], λ′ ∈ (0, 1
e
],

C′ ∈ [1,∞), and graph G, Algorithm 4 returns false only
if the size of the minimum set cover of G is greater than k′.
Otherwise, the algorithm returns a solution of size k′ log 1

λ′

that covers 1 − λ′ − ε′ fraction of E in G with probability
1 − 1

C′n . The number of edges in the sketch used by this

algorithm is O(n log2 n log6m logC′

ε′3
).

Theorem 3.3. Given ε ∈ (0, 1], C ≥ 1 and a graph G,
Algorithm 5 returns a (1 + ε) log 1

λ
approximate solution to

set cover with λ outliers on G with probability 1 − 1
n

. The
total number of edges in the sketches used by this algorithm
is Õ(n/λ3) ⊆ Õλ(n).

Proof. Remark that each iteration of the loop in Algo-
rithm 5 increases k′ by a factor of 1 + ε

3
, and we always

keep k′ ≤ n. Thus, we run at most log1+ ε
3
n instances of

Algorithm 4. Lemma 3.2 holds for each of these instances
with probability 1

Cn log1+ ε
3
n

. They all hold with probability

1− 1
Cn

by the union bound. We prove the statement of the
theorem assuming this.

Let k∗ be the size of the minimum set cover in G, and
let k′ be the final value of this variable after run of Algo-

rithm 5. Indeed Algorithm 4 returns false for k′

1+ε/3
, hence

k′ ≤ (1 + ε/3)k∗. Note that, the size of the set returned by

Algorithm 5 is

k′ log
1

λ′
= k′ log

1

λe−ε/2

= k′
[
log

1

λ
+
ε

2

]
≤
[
log

1

λ
+
ε

2

]
·
[
1 +

ε

3

]
· k∗

= k∗
[
log

1

λ
+
ε

2
+
ε

3
log

1

λ
+
ε2

6

]
≤ (1 + ε)k∗ log

1

λ
.

On the other hand, this solution covers at least

1− λ′ − ε′ = 1− λe−ε/2 − λ(1− e−ε/2) = 1− λ

fraction of the vertices in G, as claimed.
Lemma 3.2 bounds the number of edges in the sketch used

by each instance of Algorithm 4 as

O

(
n log2 n log6 m logC′

ε′3

)
= O

(
n log2 n log6 m logC log1+ ε

3
n

[λ(1− e−ε/2)]3

)
⊆ Õ(n/λ3) ⊆ Õλ(n).

With log1+ε/3 n runs of Algorithm 4, the total number of

edges in all the sketches used in this algorithm is Õ(n/λ3) ⊆
Õλ(n).

We implement each iteration of Algorithm 6 in two
streaming passes. In the first pass of each iteration we sim-
ply mark covered elements to virtually constructGi, whereas
in the second pass, we construct H≤n. After all r − 1 itera-
tions, we utilize one extra pass to keep all edges to construct
Gr. Hence, the following theorem proves the third statement
of Theorem 1.1

Theorem 3.4. Given ε ∈ (0, 1] and a graph G, Algorithm 6
finds a (1 + ε) logm approximate solution to set cover on G



Algorithm 3 k-cover

Input: An input graph G, k, and ε ∈ (0, 1].
Output: A 1− 1

e
− ε approximate solution to k-cover on G with probability 1− 1

n
.

1: Set δ′′ = 2 + logn and ε′ = 1
12
ε.

2: Construct sketch H≤n(k, ε′, δ′′). // Compute this over the stream.
3: Run the greedy algorithm (or any 1− 1

e
approximation algorithm) on this sketch and report Greedy(k,H≤n(k, ε′, δ′′)).

Algorithm 4 A submodule to solve set cover

Input: Parameters k′, ε′ ∈ (0, 1], λ′ ∈ (0, 1
e
], and C′ ∈ [1,∞), as well as a graph G promised to have a set cover of size k′.

Output: A solution of size k′ log 1
λ′ covering 1− λ′ − ε′ fraction of E in G with probability 1− 1

C′n .

1: Set δ′′ = log1+ε n[log(C′n) + 2] and ε = ε′

13 log 1
λ′

.

2: Construct sketch H≤n(k′ log 1
λ′ , ε, δ

′′). // Compute this over the stream.

3: Run the greedy algorithm on this sketch to get solution S = Greedy(k′ log 1
λ′ , H≤n)

4: if S covers at least 1− λ′ − ε log 1
λ′ fraction of E in H≤n then

5: return S
6: else
7: return false

Algorithm 5 Set cover with λ outliers

Input: A graph G and parameters ε ∈ [0, 1], λ ∈ (0, 1
e
], and C ≥ 1.

Output: A (1 + ε) log 1
λ

approximate solution to set cover with λ outliers on G with probability 1− 1
Cn

.

1: Set ε′ = λ(1− e−ε/2), and λ′ = λe−ε/2, and C′ = C log1+ ε
3
n, and k′ = 1.

2: repeat
3: k′ ← (1 + ε

3
)k′

4: Run Algorithm 4 on (k′, ε′, λ′, C′, G) and let S be the outcome. // Run these in parallel.
5: until S is not false or k′ = n
6: return S

Algorithm 6 Set cover in r iterations

Input: A graph G as well as ε ∈ (0, 1], C ≥ 1, and r ∈ [1, logm].
Output: A (1 + ε) logm approximate solution to set cover of G with probability 1− 1

Cn
.

1: Let G1 = G, λ = m−
1

2+r , C′ = (r − 1)C, S = ∅.
2: for i = 1 to r − 1 do
3: Run Algorithm 5 on (Gi, ε, λ, C

′) and let Si to be the outcome. // i-th streaming pass.
4: Add Si to S
5: Remove from Gi the elements covered by Si and call the new graph Gi+1.
6: Run the greedy algorithm to find a set cover of Gr and let SGreedy to be the result.
7: Add SGreedy to S.
8: return S



with probability 1 − 1
n

. The total number of edges in the
sketches used by this algorithm plus the number of edges in

Gr is at most Õ(nm
3

2+r ) ⊆ Õ(nmO(1/r)).

Proof. The algorithm runs r − 1 instances of Algo-
rithm 5. Theorem 3.3 holds for each with probability
1 − 1

C′n = 1 − 1
(r−1)Cn

, hence for all simultaneously with

probability 1− (r − 1) 1
(r−1)Cn

= 1− 1
Cn

. We assume these

hold when proving the statement of the theorem.
Let k′ be the size of the minimum set cover in G. Note

that for any i ∈ [1, r], Gi is an induced subgraph of G that
contains all sets in G. Thus, any set cover of G is a set cover
of Gi as well. This means that the size of the set cover of Gi
is at most k′. Therefore, Theorem 3.3 bounds the number of
sets chosen by each run of Algorithm 5 by (1 + ε) log 1

λ
k′ =

(1+ε) logm
1

2+r k′. Also, each run of Algorithm 5 covers 1−λ
fraction of the remaining uncovered elements. Therefore, the
number of uncovered elements in Gi is at most mλi−1, and

in particular this is mλr−1 = m
3

2+r for Gr. Therefore, the
total size of the set cover obtained by this algorithm is at
most

(r − 1)(1 + ε)k′ logm
1

2+r + k′ logm
3

2+r

≤ (1 + ε)k′
[
(r − 1) logm

1
2+r + logm

3
2+r

]
= (1 + ε)k′

[
(r − 1)

1

2 + r
+

3

2 + r

]
logm

= (1 + ε)k′ logm.

Remark that the total number of edges in the sketches
used by Algorithm 5 is Õ(n/λ3). With r ≤ logm such runs,

the total number of edges in all the sketches is Õ(n/λ3) =

Õ(nm
3

2+r ). On the other hand, the number uncovered ele-

ments in Gr is mλr−1 = m
3

2+r . Thus, the number of edges

in Gr is at most nm
3

2+r . Therefore, the total number of
edges in the sketches plus the number of edges in Gr is

Õ(nm
3

2+r ) ⊆ Õ(nmO(1/r)).

4. HARDNESS OF STREAMING PROB-
LEMS

Here, we give a lower bound on the space required to solve
k-cover in the streaming setting. To establish this lower
bound, we present a reduction from the set-disjointness
problem. In the set disjointness problem, two parties,
namely Alice and Bob, each holds a subset of 1, 2, . . . , n.
The goal is to determine whether the sets are disjoint or
not. Razborov [43] and Kalyanasundaram and Schintger [29]
provide a lower bound of Ω(n) even when allowing random-
ization.

Proof Proof of Theorem 1.2. Let A be the set that
Alice holds, and let B be the set that Bob holds. In our
hard k cover instance we have two vertices (namely a and
b) in E and n vertices in S. Vertex a has an edge to the i-th
vertex in E if and only if i exists in A. Similarly, b has an
edge to the i-th vertex in E if and only if i exists in B. In
the input stream first we see the edges of a (which contains
the information Alice holds) and then the edges of b (which
contains the information Bob holds).

In this example, if the sets A and B are disjoint, each of
the vertices in S covers at most one of a and b, and thus, the
value of an optimum solution to 1-cover on this graph is 1.

Otherwise, there is a vertex i which has edge to both a and
b, and thus, the value of an optimum solution to 1-cover on
this graph is 2. Therefore, distinguishing between the case
that the value of the optimum solution to 1-cover is 1 and
the case that this value is 2 requires Ω(n) space in total.

5. THE K-COVER PROBLEM VIA (1 ± ε)-
APPROXIMATE ORACLE

In this section we consider the approximability of k-cover
using the (1±ε)-approximate oracle, and prove Theorem 1.3
by showing that any α-approximation algorithm via oracle
Cε requires at least exp

(
Ω(nε2α2 − logn)

)
oracle queries.

Theorem 5.2 states the hardness of the k-purification
problem. Its proof uses the following generalization of the
Chernoff bound.

Lemma 5.1. Let X be the sum of several negatively corre-
lated binary random variables. We have

Pr (|X −E[X]| > γ) ≤ 2 exp

(
− γ2

3E[X]

)
.

Proof. Panconesi and Srinivasan [42] show that if
X is the sum of certain negatively correlated binary
random variables, we have Pr (|X −E[X]| > εE[X]) ≤
2 exp

(
− ε

2E[X]
3

)
. Setting γ = εE[X] yields

Pr (|X −E[X]| > γ) ≤ 2 exp

−
(

γ
E[X]

)2

·E[X]

3


= 2 exp

(
− γ2

3E[X]

)

as desired.

Theorem 5.2. Any randomized algorithm that solves k-
purification with probability at least δ requires at least

δ exp
(

Ω( ε
2k2

n
)
)

oracle queries.

Proof. By Yao’s principle we can restrict our analysis
to deterministic algorithms. Let Alg be a deterministic al-
gorithm for k-purification. Suppose that after q queries,
algorithm Alg finds with probability δ a set S such that
Pureε(S) = 1. Let S1, S2, . . . , Sq be the q subsets queried by
Alg. Definition of δ and the union bound give

δ ≤
q∑
i=1

Pr
(
Pureε(Si) = 1

)
. (12)

Now, we provide an upper bound to Pr
(
Pureε(S) = 1

)
for an arbitrary subset S. Let Xi be a random variable
that indicates whether the i-th item in S is gold. Let X =∑|S|
i=1 Xi. Indeed, Xi variables are negatively correlated [28].



We set γ = ε( k|S|
n

+ k2

n
) in Lemma 5.1 to obtain

Pr
(
Pureε(S) = 1

)
= Pr

(
|X −E[X]| > ε

(
k|S|
n

+
k2

n

))
≤ 2 exp

(
−
ε2( k|S|

n
+ k2

n
)2

3E[X]

)

≤ 2 exp

(
−
ε2( k|S|

n
+ k2

n
)2

3 k|S|
n

)

≤ 2 exp

(
−ε

2k(|S|+ k)2

3n|S|

)
≤ 2 exp

(
−ε

2k2

3n

)
.

Coupled with Inequality (12) the above implies that δ ≤∑q
i=1 Pr

(
Pureε(Si) = 1

)
≤ 2q exp

(
− ε

2k2

3n

)
, which means

q ≥ δ
2

exp
(
ε2k2

3n

)
, as desired.

Proof Proof of Theorem 1.3. Given an instance of
the k-purification problem we construct a k-cover instance
with a (1± ε′)-approximate oracle as follows. We associate
one set for each gold or brass item in the original instance
in such a way that the value of the coverage function (for
nonempty S) is C(S) = k + n

k
Gold(S); i.e., there are k ele-

ments common between all gold and brass sets, and in addi-
tion, each gold set contains n

k
additional exclusive elements.

The optimum solution consists of all gold sets, hence

Opt = k +
n

k
k = k + n > n. (13)

We define

Cε′(S) =

{
k + |S| if Pureε(S) = 0

C(S) otherwise.

We claim that Cε′ is a (1±ε′)-approximate oracle to f for
ε′ = 2ε. We set ε′ = 2ε. Notice that for Pureε(S) = 1, the
estimate Cε′(S) is clearly within the 1 ± ε′ factor of C(S).

Moreover when Pureε(S) = 0, we have k|S|
n
−ε
( k|S|

n
+ k2

n

)
≤

Gold(S) ≤ k|S|
n

+ ε
( k|S|

n
+ k2

n

)
. Thus we have

(1− ε′)C(S) ≤ 1

1 + ε
C(S)

=
1

1 + ε

[
k +

n

k
Gold(S)

]
≤ 1

1 + ε

[
k +

n

k

(
k|S|
n

+ ε

(
k|S|
n

+
k2

n

))]
=

1

1 + ε
[k + |S|+ ε(|S|+ k)]

= k + |S| = Cε′(S).

Similarly we have

(1 + ε′)C(S) ≥ 1

1− εC(S)

=
1

1− ε

[
k +

n

k
Gold(S)

]
≥ 1

1− ε

[
k +

n

k

(
k|S|
n
− ε

(
k|S|
n

+
k2

n

))]
=

1

1− ε [k + |S| − ε(|S|+ k)]

= k + |S| = Cε′(S).

Therefore, Cε′ is a (1± ε′)-approximate oracle to C.
For an arbitrary subset S of size k with Pureε(S) = 0, we

have

C(S)

Opt
<
k + n

k
Gold(S)

n

≤
k + n

k

[
k|S|
n

+ ε
(
k|S|
n

+ k2

n

)]
n

≤
k + n

k

[
k2

n
+ ε
(
k2

n
+ k2

n

)]
n

=
(2k + 2εk)

n

≤ 4k

n
.

Thus, if S is a 4k
n

-approximate solution to the k-cover
instance, we have Pureε(S) = 1. Therefore, any
6k
n

-approximation algorithm returns a set S such that

Pureε(S) = 1 with probability at least 6k/n−4k/n
Opt

= 2k/n
n+k

=
2k

n2+kn
≥ 1

n2 .

Recall that for any subset S given that Pureε(S) = 0,
the value of Cε′(S) is predetermined, and can be computed
independent of the actual value of C(S). Thus, using a 6k

n
-

approximation algorithm for the k-cover problem with ε′-
error oracle, with probability 1

n2 , one can find a set S such
that Pureε(S) = 1, using the same number of queries. The-
orem 5.2 states that the number of queries is not less than

1

n2
exp

(
Ω
(ε′2k2

n

))
=

1

n2
exp

(
Ω
(ε2k2

n

))
∈ exp

(
Ω
(ε2k2

n
− logn

))
= exp

(
Ω
(
nε2α2 − logn

))
.

6. CONCLUSION
In this paper, we presented a simple, yet powerful sketch-

ing technique for coverage problems, and showed how to con-
struct this sketch in streaming model. The streaming results
improve the state of the art in three dimensions: approxi-
mation ratio, space complexity, and streaming arrival model
(i.e., from set-arrival to element- or edge-arrival model). In
an accompanied paper, we also applied this sketching idea
for distributed computation models (such as MapReduce),
and show how it improves the best known results in that
area as well. More notably, we also performed an extensive
empirical evaluation of resulting distributed algorithms and
show the effectiveness of applying this sketching technique
for analyzing massive data sets in practice [10]. As noted
earlier, this sketch and the distributed and streaming algo-
rithms based on it work very well in instances in which the
size of the subsets is large. Notably, all the other techniques
(e.g., based on composable core-sets) fail in these regimes.
As future research, we hope this technique can be applied
to other computation models and other problems.
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APPENDIX
A. OMITTED PROOFS FOR THE

SKETCHING TECHNIQUE

Proof Proof of Lemma 2.2. Let Xu be a random
variable indicating whether h(u) ≤ p for a vertex u ∈
Γ(G,S). By definition we have C(S) = |Γ(G,S)| and∑
u∈Γ(G,S) Xu = |Γ(Hp, S)|. Thus, we have

E
[
|Γ(Hp, S)|

]
= E

 ∑
u∈Γ(G,S)

Xu


=
∑

u∈Γ(G,S)

E[Xu]

=
∑

u∈Γ(G,S)

p

= p|Γ(G,S)|.

By the Chernoff bound to Γ(Hp, S) we know that with prob-

ability at least 1− 2 exp
(
− ε
′2p|Γ(G,S)|

3

)
,

∣∣∣|Γ(Hp, S)| − p|Γ(G,S)|
∣∣∣ ≤ ε′p|Γ(G,S)|.

In other words,

Pr

(∣∣∣1
p
|Γ(Hp, S)| − C(S)

∣∣∣ ≤ ε′C(S)

)
≥

1− 2 exp

(
−ε
′2pC(S)

3

)
.

Setting ε′ = εOptk
C(S)

in the above yields

Pr

(∣∣∣1
p
|Γ(Hp, S)| − C(S)

∣∣∣ ≤ εOptk

)
≥ 1− 2 exp

(
−ε

2Opt2kp

3C(S)

)
≥ 1− 2 exp

(
−ε

2Opt2k
3C(S)

6δ′

ε2Optk

)
by definition of p,

= 1− 2 exp

(
− Optk

3C(S)
6δ′
)

≥ 1− 2 exp

(
−6δ′

3

)
since Optk ≥ C(S),

> 1− exp

(
1− 6δ′

3

)
as 2 < e,

≥ 1− eδ
′
.

Proof Proof of Lemma 2.5. By applying Lemma 2.3
to S = arg maxS |Γ(Hp, S)|, we have

1

p
max

S⊆S:|S|=k
|Γ(Hp, S)| − C(S) ≤ εOptk.

Combining with C(S) ≤ Optk and noting that H ′p is a sub-
graph of Hp gives

max
S⊆S:|S|=k

|Γ(H ′p, S)| ≤ p(1 + ε)Optk

and we plug in the definition of p to obtain

max
S⊆S:|S|=k

Γ(H ′p, S) ≤ 6C log(n)kδ

ε2Optk
(1 + ε)Optk

=
6C(1 + ε) log(n)kδ

ε2

≤ 12C log(n)kδ

ε2
.

Proof Proof of Lemma 2.8. Let Optk′ be the set
cover of size k′ on the input graph. Pick p∗ such that
H ′p∗ = H≤n. Remark that Hp∗ is an induced subgraph of G
containing all sets S. Thus, Optk′ is a set cover in Hp∗ , as
well.

Similarly to the proof of Lemma 2.4, we present here a
randomized solution R∗ that, in expectation, covers 1 − ξε
fraction of the vertices. This implies that there exists a
solution of size k′ covering at least 1 − ξε fraction of the
elements.

We construct R∗ by removing ξεk′ = εk sets chosen uni-
formly at random from Optk′ and adding ξεk′ = εk other
sets picked uniformly at random.

Each element with degree at most n log(1/ε)
εk

in Hp∗ still
exists in Γ(Hp∗ , R

∗) with probability 1 − ξε, hence it is in
Γ(H≤n, R

∗), too. On the other hand, for any element u

with degree at least n log(1/ε)
εk

in Hp∗ , the probability that u
is not contained by any of ξεk′ randomly chosen sets cannot
exceed(

1−
n log(1/ε)

εk

n

)εk
=

(
1− log(1/ε)

εk

)εk
≤
(

1

e

)log 1
ε

= ε.

Thus, each element of Hp∗ exists in Γ(H≤n, R
∗), as well,

with probability 1− ε.



B. OMITTED PROOFS FOR THE
STREAMING SETTING

Proof Proof of Theorem 3.1. The first part of the
statement is derived from the approximation guarantee
of Greedy and Theorem 2.7. These two imply that
Greedy(k,H≤n(k, ε′, δ′′)) is a 1− 1

e
−12ε′ = 1− 1

e
−ε approx-

imate solution with probability 1 − 3eδ
′′

= 1 − 3e2+logn ≥
1− 1

n
, as desired.

By definition of H≤n(k, ε′, δ′′), the number of edges in this
sketch is not more than

24n log(1/ε′) log(n)δ′′log log1−ε′ m

(1− ε′)ε′3 + n

=
24n log( 12

ε
) logn(2 + logn)log log1−ε/12 m)

(1− ε/12)(ε/12)3
+ n

∈O
(n log3 n log2 m log logm

ε′3

)
∈ Õ(n)

where with out loss of generality we assume ε′ ∈ Ω( 1
m

).

Lemma B.1. Let k′ be the size of a set cover of graph G.
Pick arbitrary ε ∈ (0, 1], λ′ ∈ (0, 1

e
], and let k = log( 1

λ′ )k
′.

Then Greedy(k,H≤n) covers at least 1−λ′−ε log 1
λ′ fraction

of elements E in H≤n.

Proof. Lemma 2.8 ensures the existence of a solution of
size k′ on H≤n covering at least 1− ε log 1

λ′ fraction of E in
H≤n. Thus, Greedy(k,H≤n) covers at least

(1− λ′)
[
1− ε log

1

λ′

]
≥ 1− λ′ − ε log

1

λ′

fraction of E in H≤n.

Proof Proof of Lemma 3.2. According to
Lemma B.1, for a graph G with a set cover of size k′,
the solution Greedy(k,H≤n) covers at least 1− λ′ − ε log 1

λ′

fraction of E in H≤n, hence Algorithm 4 does not return
false, as claimed.

We prove the second part of the lemma in the case The-
orem 2.7 holds for H≤n. This happens with probability

1− 3eδ
′′

= 1− 3elog(C′n)+2 ≥ 1− 1
C′n .

On the other hand, in case Algorithm 4 does not return
false, Greedy(k,H≤n) covers no less than 1 − λ′ − ε log 1

λ′

fraction of E in H≤n. Then Theorem 2.7 implies that
Greedy(k,H≤n) covers at least

1− λ′ − ε log
1

λ′
− 12ε ≥ 1− λ′ − 13ε log

1

λ′
= 1− λ′ − ε′

fraction of elements.
By definition of H≤n(k, ε, δ′′), the number of edges in this

sketch is at most

24n log(1/ε) log(n)δ′′log log1−εm

(1− ε)ε3
+ n

=
24n log(1/ε) logn log1+ε n[log(C′n) + 2]

log log1−εm
(1− ε)ε3 + n

∈ O
(n log2 n log2 m logC′ log logm

ε3

)
wlog ε ∈ Ω(

1

m
),

=O

n log2 n log2 m logC′ log logm[
ε′

13 log(1/λ′)

]3


=O

(
n log2 n log5 m logC′ log logm

ε′3

)
wlog λ′ ∈ Ω(

1

m
),

⊆O
(
n log2 n log6 m logC′

ε′3

)
.

C. AN O(NK) SKETCH USING `0

SKETCHES
We use the `0 sketch defined as follows.

Definition C.1 (`0 sketch). Given a multiset Π, the number
of distinct elements in Π is said to be `0 of Π.

Cormode et al. [16] provides an O(logn 1
ε2

log 1
δ
) space

streaming algorithm that with probability 1−δ gives a 1−ε
approximation to the `0 sketch. Interestingly, one can merge
two of these `0 sketches and again with probability 1−δ get a
1−ε approximation to the `0 sketch of the merged multiset.

Given an input graph G(S, E), we maintain an `0 sketch
(using the algorithm in [16]) for the set of neighbors of each
vertex in S (we fix ε and δ used in the `0 sketch later). We
estimate the value of each set S ⊆ S by merging the `0
sketches corresponding to the vertices in S.

Consider that, for each set S ⊆ S, with probability 1− δ,
we give a 1−ε approximation of the coverage valuation of S.
Nevertheless, to find the k-cover solution, we look at

(
n
k

)
sets.

The union bound ensures that, with probability 1−
(
n
k

)
δ, all

the
(
n
k

)
estimations are accurate. We set δ = 1

Θ̃((nk))
, so

these hold with high probability.
The space required by each `0 sketch is O(logn 1

ε2
log 1

δ
) =

Õ(log
(
n
k

)
) = Õ(k). The space required by the algorithm

to maintain n sketches is thus Õ(nk), giving the following
theorem.

Theorem C.2. Using `0 sketches, there exists an
exponential-time 1 − ε approximation streaming algorithm
for k cover using Õ(nk) space.


