
Optimal Distributed Submodular Optimization
via Sketching

MohammadHossein Bateni
Google

New York, NY
bateni@google.com

Hossein Esfandiari
Harvard University

Cambridge, MA
esfandiari@seas.harvard.edu

Vahab Mirrokni
Google

New York, NY
mirrokni@google.com

ABSTRACT
We present distributed algorithms for several classes of submod-
ular optimization problems such as k-cover, set cover, facility
location, and probabilistic coverage. The new algorithms enjoy
almost optimal space complexity, optimal approximation guar-
antees, optimal communication complexity (and run in only
four rounds of computation), addressing major shortcomings of
prior work. We first present a distributed algorithm for k-cover
using only Õ(n) space per machine, and then extend it to several
submodular optimization problems, improving previous results
for all the above problems—e.g., our algorithm for facility loca-
tion problem improves the space of the best known algorithm
(Lindgren et al. [20]). Our algorithms are implementable in
various distributed frameworks such as MapReduce and RAM
models. On the hardness side we demonstrate the limitations
of uniform sampling via an information theoretic argument.

Furthermore, we perform an extensive empirical study of
our algorithms (implemented in MapReduce) on a variety of
datasets. We observe that using sketches 30–600 times smaller
than the input, one can solve the coverage maximization prob-
lem with quality very close to that of the state-of-the-art single-
machine algorithm. Finally, we demonstrate an application of
our algorithm in large-scale feature selection.

ACM Reference Format:
MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni.
2018. Optimal Distributed Submodular Optimization via Sketching. In
Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
As important special cases of submodular optimization, max-
imum k-cover, minimum set cover, and facility location prob-
lems are among the most central problems in optimiza-
tion with a wide range of applications in machine learn-
ing, document summarization, and information retrieval; e.g.,
see [1, 10, 12, 20, 25]. Increasingly, the need for develop-
ing distributed algorithms for these problems to handle huge

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

datasets seems inevitable. To address this need, many tech-
niques have been developed for distributed submodular max-
imization [5, 9, 14, 17, 19, 20, 22, 25, 29]. However many
of these results do not take advantage of the special structure
of coverage functions, and consequently achieve suboptimal
approximation guarantees and/or poor space complexities in
terms of the size of the (coverage) instance. In particular, most
previous results on submodular maximization either explicitly
or implicitly assume value oracle access to the submodular
function. Such an oracle for coverage functions has the follow-
ing form: given a subfamily of the (input) family, determine the
size of the union of the subsets in the subfamily. Implementing
this subroutine is impractical in the presence of large subsets
in the family and/or a large ground set. Indeed even communi-
cating entire subsets across machines might be impractical. In
this paper, first we aim to address the above issues, and present
almost optimal distributed approximation algorithms for cov-
erage optimization problems with optimal communication and
space complexity. Next, we extend our results to several other
well-motivated classes of submodular functions, such as facility
location and probabilistic coverage among others. Before elabo-
rating on our results, let us describe the coverage optimization
problems and the distributed computation models.
Coverage Optimization problems Consider a ground set E of
m elements, and a family F ⊆ 2E of n subsets of the elements
(i.e., n = |F | and m = |E |).1 The coverage function C is
defined as C(S) = |∪U ∈SU | for any subfamily S ⊆ F of
subsets. Given k ≥ 0, the goal in k-cover is to pick k sets from
F with the largest union size. Set Cover asks for the minimum
number of sets from F that together cover E entirely. In this
paper, we also study the following variant of this problem,
called set cover with λ outliers2, where the goal is to find the
minimum number of sets covering at least a 1 − λ fraction of
the elements E.
MapReduce Model The distributed computation model—e.g.,
MapReduce [15]—assumes that the data is split across multiple
machines. In each round of a distributed algorithm, the data
is processed in parallel on all machines: Each machine waits
to receive messages sent to it in the previous round, performs
its own computation, and finally sends messages to the other
machines. The total amount of data a machine processes is
called its load, which ought to be sublinear in the input size. In
fact, two important factors determine a distributed algorithm’s
performance: (i) the number of rounds of computation, and (ii)

1There are two separate series of work in this area. We use the convention of the
submodular/welfare maximization formulation [4], whereas the hypergraph-based
formulation [28] typically uses n,m in the opposite way.
2It is sometimes called (1 − λ)-partial cover in the literature.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the maximum load on any machine. These parameters have
been discussed and optimized in previous work [7, 17, 18, 22].
RAM Model Another model for handling large amounts of
data is what we call the RAM model [2], where the algorithm
has random access to any part of the input (say, to the edge
lists in the graph) but each lookup takes constant time. For
many problems it might be possible to judiciously and adap-
tively query the data, and solve the problem. Distributed hash
tables (such as BigTable) have been proposed and applied in
practice [11] to implement algorithms in this model. From
a theoretical standpoint, this model is closely related to the
communication complexity literature.
Continuous Distributed Monitoring Model In this model,
each of η clients observes a separate data stream. At the end of
the stream, a server is asked to solve a problem on the union of
the data streams via communication with clients. In this model,
the goal is to minimize the space and the communication.
Our Contributions In this work, we present distributed algo-
rithms for submodular optimization problems such as k-cover
and set cover, addressing several shortcomings of previously
studied algorithms and achieving optimal approximation guar-
antees as well as almost optimal space and communication
complexity. To achieve this result, we employ an adaptive sam-
pling (or sketching) technique that can be implemented in a
distributed manner. We also rule out effectiveness of various
simpler sampling techniques by providing lower bound exam-
ples. We extend our algorithm to several problems such as facil-
ity location, dominating set, probabilistic coverage, and weighted
coverage. Below we summarize our main contributions.

First of all, we focus on a special case of submodular
optimization—coverage problems. Here we develop distributed
algorithms for k-cover and set cover with λ outliers, that are al-
most optimal from three perspectives: (i) they achieve optimal
approximation guarantees of 1 − 1/e and log 1

λ for the above
two problems, respectively; (ii) they have a memory complexity
of Õ(n) and also Õ(n) communication complexity; and finally
(iii) they run in a few (constant) rounds of computation; see
Table 1 for brief comparison of our theoretical results with prior
work. We note that the space complexity of our algorithm is
independent of the size of the universe of elements and is only
a linear function of the number of input sets. This is crucial for
tackling coverage instances with very large sets or large total
number of elements.

Second, we also rule out effectiveness of uniform sampling
as a natural technique [27, e.g.] by providing an information
theoretic upper bound on its performance.

Third, we extend our algorithm to several well motivated
problems with submodular functions, such as facility location,
dominating set, probabilistic coverage, and weighted coverage.

For the facility location problem, our algorithm requires Õ(n)
space, while the best previous algorithm [20] requiresO(nm/k)
space. Also for dominating set, which has applications to influ-
ence maximization in social networks [25], we give the first
distributed algorithm that does not need to load all edges of a
node onto a single machine (Deferred to the full version). This
is crucial for handling graphs with nodes of very high degree.
We show that our algorithm can be implemented in MapRe-
duce, RAM and Continuous Distributed Monitoring models.

Furthermore, we present extensions of our distributed algo-
rithm to a number of variants of weighted coverage problems
(Section 3). Extensions to RAM and continuous distributed
monitoring model are presented in Section 4.

Furthermore, we demonstrate the power of our techniques
via an extensive empirical study on a variety of applications
and publicly available datasets (Section 5). We observe that
sketches that are a factor 30–600 smaller than the input suffice
for solving k-cover with quality (almost) matching that of the
state-of-the-art single-machine algorithm; e.g., for a medium-
size dataset, we can obtain 99.6% of the quality of the single-
machine STOCHASTIC GREEDY algorithm using only 3% of
the input data. Some of the instances we examine in this paper
are an order of magnitude larger than the ones studied in prior
works [20, 25]. In particular, for facility location we show that
our space complexity is significantly smaller than those of [20]
(See Figure 5).

Finally, we demonstrate an application of our algorithm in
large-scale feature selection by formalizing it as a coverage
problem where we aim to choose a subset of features that cover
as many pairs of samples as possible. In doing so, we take
advantage of the fact that the space complexity of our algorithm
is independent of the number of elements in the instance, and
we can solve instances of coverage problem with very large
sets.
Further Related Work Although maximum k-cover may be
solved using a distributed algorithm for submodular maximiza-
tion, all the prior work in this area (have to) assume value oracle
access to the submodular function, introducing a dependence
on the size of the sets in the running time of each round of
the algorithms. In this model, Chierichetti et al. [12] present
a 1 − 1

e -approximation algorithm for k-cover in polylogarith-
mic number of rounds of computation, improvable to O(logn)
rounds [9, 19]. Recently randomized core-sets were used to
obtain a constant-approximation 2-round algorithm for this
problem [14, 22], where the best known approximation factor
is 0.54. In other recent work, [24, 26] give a distributed algo-
rithm for submodular cover (a generalization of set cover) in
the MapReduce framework, however, their algorithm runs in
superconstant number of rounds. Moreover, compared to the
result presented here, their algorithm has much larger space
complexity when applied to set cover. [27] study a general-
ization of k-cover for influence maximization using uniform
sampling of elements.

Coverage optimization problem has been considered in the
streaming setting as well. In a recent work we provide stream-
ing algorithms for coverage optimization problems [8]. There
we introduce an abstract sketch and present a sequential im-
plementation of the sketch in the streaming setting. In this
paper, we present a nontrivial construction of the sketch with
Õ(n) space using independent machines in a distributed manner.
More specifically, while a more direct implementation of the
sketch requires Õ(n +m) space per machine to keep a label for
each element, here we use a shared hash function and a random-
ized load-balancing scheme to improve the space complexity
to Õ(n). Note that going from Õ(n +m) to Õ(n) is critical in
the empirical performance of the algorithm. The same improve-
ment also enables us to extend our results to the weighted and

2

Table 1: Comparison of our results to prior work. The first three algorithms work for the more general case of submodular
maximization.

Problem Credit # rounds Approximation Load per machine

k-cover [19] O(1εδ logm) 1 − 1
e − ε O(mknδ)

k-cover [22] 2 0.54 max(mk2,mn/k)

k-cover [13] 1
ε 1 − 1

e − ε
max(mk2,mn/k)

ε
facility location [20, 29] O(1) 1 − 1

e − ε Õ(nm/k)

k-cover Section 2 4 1 − 1
e − ε Õ(n)

facility location Section 3 4 1 − 1
e − ε Õ(n)

set cover w. outliers Section 2 4 (1 + ε) log 1
λ Õ(n)

submodular cover [24] Ω(n
1
6) Ω(n

1
6) Õ(mn)

submodular cover [26] O(
logn logm

ϵ) (1 + ε) log 1
λ Õ(mn)

dominating set Full version 4 (1 + ε) log 1
λ Õ(n)

Table 2: Comparison of results to prior work for the RAM and continuous distributed monitoring models.

Problem Credit Approximation Runtime
k-cover [6] 1 − 1

e − ε Õ(nm)

k-cover Section 4 1 − 1
e − ε Õ(n)

set cover with outliers Section 4 (1 + ϵ) log 1
λ Õ(n)

probabilistic settings as well as facility location. Moreover, on
the hardness side, we show the shortcoming of uniform sam-
pling by providing an (information theoretic) upper bound on
its performance. In addition, we show how to apply our result
to other settings such as the RAM model and the Distributed
Monitoring Model, and other problems such as dominating set.
In fact, we only borrow Lemma 2.4 (directly and without proof)
from the previous work. All the proofs presented here are new
contributions of the current work.

[21] provide another streaming algorithm for set cover prob-
lem, with a different technique. Their result is highly based on
their iterative algorithm for k-cover. Hence, they do not provide
algorithms for other coverage optimization problems. Besides,
due to the iterative nature of their algorithm and analysis, it is
not clear how to apply this algorithm to distributed settings.
More Notation Coverage problems may also be described via
a bipartite graph G, with the two sides corresponding to F
and E, respectively. The edges of G correspond to pairs (S, i)
where i ∈ S ∈ F . For simplicity, we assume that there is no
isolated vertex in E. As is customary, we let Γ(G,V ′) denote
the set of neighbors of vertices V ′ in G. When applied to a
bipartite graph G modeling a coverage instance, we can write
the coverage function as C(S) = |Γ(G,S)| for any S ⊆ F .

2 ALGORITHMS FOR k-COVER AND SET
COVER

In this section we present distributed algorithms for k-cover
and set cover with λ outliers. We aim to develop algorithms that
only need Õ(n) space per machine. As a first attempt, if we

want to apply the distributed submodular optimization results to
our problems (e.g., DISTGREEDY [25] or composable core-set
algorithm [14, 22]), the underlying algorithms would distribute
subsets across machines. The main issue with such an approach
is that sending whole subsets does not scale well for large
subsets. A natural way to deal with the issue of large subsets
is to subsample elements while sending those sets around, and
a natural sampling technique would be uniform sampling. We
first rule out applicability of such simple sampling schemes for
this problem. In particular, we present a hardness example for
which the size (i.e., the number of edges) of the instance on each
machine has to be Ω(nk) to obtain a bounded approximation
guarantee.

THEOREM 2.1. Pick arbitrary numbers n, β ≥ 1 and k ≤
n/2. Let Alg be an algorithm that samples elements uniformly
at random and reports an arbitrary optimum solution to k-cover
on the sampled instance. Unless Alg samples more than nk/β2

edges, its approximation factor is at most 2
β+1 .

PROOF. Consider the following example with k bonus sets
and n − k normal sets. Moreover, we have βn special elements
and n normal ones. Each set has edges to all normal elements,
and each bonus set has edges to βn/k unique bonus elements.
Notice that the optimum k-cover solution picks all the k bonus
sets, and covers all the (β + 1)n elements.

Note that each normal element has n edges. Since Alg sam-
ples at most nk/β2 edges, no more than k/β2 normal elements
in expectation make it to the sample. In other words, each ele-
ment is sampled with probability at most k

β 2n . Therefore, Alg

3

samples at most k
β 2n × βn = n/β bonus elements, in expecta-

tion.
Indeed, if Alg do not pick any bonus elements corresponding

to a bonus set S , in the sampled graph the set S covers the same
elements as any normal set does. Thus Alg might pick a normal
set instead of S in an arbitrary optimum solution on the sampled
graph. Notice that Alg samples at most n/β bonus elements in
expectation, which corresponds to no more than n/β distinct
bonus sets, in expectation. Hence there is an optimum solution
on the sampled graph with n/β bonus sets and n − n/β normal
sets in expectation. The expected total number of elements in
this solution is n + n

β × βn = 2n. �

This observation suggests that any distributed algorithm
should employ a more nuanced sampling (sketching) technique.
To this end, we invoke a recent technique of ours [8]3: if we can
develop a distributed algorithm with Õ(n) space that outputs
a sketch (denoted by H≤n (k, ε,δ

′′), or simply H≤n) satisfying
three special properties, we can prove tight approximation
guarantees for the following algorithm: solve the problem by
running a greedy algorithm on the sketch.

Algorithm 1 Distributed algorithm for k-cover

Input: Input graph G and parameters k, ε ∈ (0, 1], δ ′′.
Output: Solution to the coverage problem.

Let h : E 7→ [0, 1] be a uniform, independent hash function.
Round 1: Send the edges of each element to a distinct machine.

Let ñ = 24nδ log(1/ε) logn
(1−ε)ε3 . For each element v, if h(v) ≤

2ñ
m , the machine corresponding to v sends h(v) and its
degree to machine one; it does nothing otherwise.

Round 2: Machine one iteratively selects elements with the
smallest h until the sum of the degrees of the selected
vertices reaches ñ. Then it informs the machines corre-
sponding to selected elements.

Round 3: For each selected element v, if the degree of v is
less than ∆ =

n log(1/ε)
εk , machine v sends all its edges

to machine one. Otherwise, it sends ∆ arbitrary edges to
machine one.

Round 4: Machine one receives the sketch H≤n , runs greedy
algorithm for k-coverage on it, and output the solution.

Here we develop Algorithm 1, a four-round distributed algo-
rithm4, and prove the main result of this section, by showing
that the output of this algorithm satisfies those three properties
with high probability in a distributed setting using only Õ(n)
space. More formally, we prove the following.

THEOREM 2.2. With probability 1− 2
n , Algorithm 1 outputs

a (1 − 1
e − ϵ)-approximate solution to k-cover, and no machine

uses more than Õ(n) space in this algorithm.

The proof has two ingredients. First of all, we show that the
sketch H≤n computed in this algorithm satisfies the following
3In a recent work [8], we study streaming algorithms for coverage functions and
in particular show that, for fixed positive α and δ , an α approximate solution to
k -cover on a sketch with the above properties is an α − ϵ approximate solution
on the actual input, with probability 1 − e−δ .
4Number of rounds were not optimized in the interest of readability.

three properties: Given parameters ϵ and δ ′′, (1) elements are
sampled uniformly at random, (2) the degree of each element
is upper bounded by n log(1/ε)

εk , and (3) the total number of

edges is at least 24nδ log(1/ε) logn
(1−ε)ε3 , where δ = δ ′′ log log 1

1−ε
m.

Secondly, we need to show that the algorithm uses Õ(n) space
per machine. The following lemma summarizes properties of
the algorithm that pave the way for the proof of the theorem.

LEMMA 2.3. Given is a graph G(F ∪ E,E) along with k,
ε ∈ (0, 1] and δ ′′ ∈ (0, 1]. Then with probability 1 − 1/n2,
• H≤n has no element with hash value exceeding 2ñ

m , and
• there are at most 3ñ edges with hash value not exceeding

2ñ
m ,

where ñ = 24nδ log(1/ε) logn
(1−ε)ε3 .

PROOF. Note that H≤n requires only ñ edges. Clearly ñ
elements are sufficient to satisfy this. In the rest of the proof
we show that, with probability 1 − 1/n, the number of elements
with hash value less than 2ñ

m is within the range [ñ, 3ñ]. The
lower bound together with the fact that H contains at most ñ
elements gives us the first part of the theorem. The upper bound
directly proves the second part of the theorem.

For every element v ∈ E, let Xv be the binary random
variable indicating whether h(v) < 2ñ

m , and let X =
∑
v ∈E Xv

denote the number of elements with hash value less than 2ñ
m .

The Chernoff bound gives

Pr
(
|X − E[X]| ≥

1
2
E[X]

)
≤ 2 exp

(
−

1
4E[X]

3

)
= 2 exp

(
−
E[X]

12

)
. (1)

Remark that h is a uniform mapping to [0, 1]. Thus,
Pr[h(v) ≤ 2ñ

m] =
2ñ
m for any element v, so we have

E[X] =
∑
v ∈E

E[Xv] =
∑
v ∈E

2ñ
m
= 2ñ. (2)

Putting (1) and (2) together gives us

Pr
(
|X − 2ñ | ≥ ñ

)
≤ 2 exp

(
−
ñ

6

)
= 2 exp

(
−
4nδ log(1/ε) logn
(1 − ε)ε3

)
≤ 2 exp

(
− 2 logn − 1

)
< exp

(
− 2 logn

)
=

1
n2
.

Thus we have ñ ≤ X ≤ 3ñ with probability 1 − 1
n2 . �

We use the following lemma to prove Theorems 2.2 and 2.5.

LEMMA 2.4 (FROM [8]). For any ε ∈ (0, 1] and any set-
cover graphG, there exist sketch-based algorithms that succeed
with probability 1 − 1

n in finding the following.

(1) One finds a (1 − 1
e − ε)-approximate solution to k-cover

on G, working on a sketch with Õ(n) edges.
(2) The other finds a (1+ε) log 1

λ approximate solution to set
cover with λ outliers on G. The sketches used altogether
have Õ(n/λ3) = Õλ(n) edges.

Now we are ready to prove Theorem 2.2.
4

PROOF. of Theorem 2.2 We first show that Algorithm 1
uses Õ(n) space per machine. Next we prove that the algorithm
constructs by Round 4 a sketch satisfying the desirable three
properties mentioned above. As a result, Lemma 2.4 guarantees
that invoking the greedy algorithm in Round 4 produces the
promised solution.

The degree of each element is at most n, the number of
sets; thus, the space consumption of each machine in the first
and third rounds is Õ(n). In the second round machine number
1 receives Õ(1) bits from each machine independently with
probability 2ñ

m . Using the second condition of Lemma 2.3, the
number of messages that this machine receives is at most 3ñ.
Therefore, this machine uses Õ(n) space. The number of edges
machine one receives in the fourth round is at most ñ+n = Õ(n).

By the first condition of Lemma 2.3, no element in H≤n has
hash value more than 2ñ

m . Thus the machines with no output in
the first round do not miss any elements of H≤n . Then the set
of elements selected by machine one in round two is the same
as in H≤n . Therefore, what machine one receives in the fourth
round is H≤n . Discussion at the beginning of the proof finishes
the argument. �

While our algorithm for k-cover runs a greedy algorithm
on the sketch, our algorithm for set-cover with λ outliers makes
logarithmically many guesses on the number of sets in the
solution, constructs the H≤n sketch for each (simultaneously),
and solves the problem on each resulting sketch.

THEOREM 2.5. There exists a four-round distributed algo-
rithm that reports a (1 + ε) log 1

λ -approximate solution to set

cover with λ outliers, with probability 1 − 2
n . Moreover, each

machine uses Õ(n) space in the algorithm.

PROOF. Theorem 2.5 We run log1+ε/3 n copies of the first
three stages of Algorithm 1 (simultaneously) to construct the
log1+ε/3 n different sketches required by Lemma 2.4. The dis-
cussion in Theorem 2.2 implies that each copy of the sketch is
constructed correctly, with probability 1 − 1

n2 . Together with
Lemma 2.4 this proves that our algorithm gives a (1 + ε) log 1

λ -
approximate solution to set cover with λ outliers, with probability
1 − 1

n − log1+ε/3 n
1
n2 > 1 − 2

n . �

3 MORE GENERAL SUBMODULAR
FUNCTIONS

In this section we extend5 our results to three classes of sub-
modular functions: In element-weighted k-cover a weight wv
is associated with each element v ∈ E, and the objective is to
maximize the total weight of covered elements. An instance of
facility location problem contains a quantity αu,v ∈ [0, 1]6 for
each S ∈ F ,v ∈ E, denoting that set S covers αS,v fraction of
element v. A solution S ⊆ F covers maxS ∈S αS,v fraction of
element v. Here the objective is to find a solution S ⊆ F of
size k that maximizes

∑
v ∈E maxS ∈S αS,v .

5Due to space limitations, some proofs are omitted from the body of the paper.
All omitted proofs appear in the full version. The full version is available at
https://arxiv.org/abs/1612.02327
6In general, in facility location, αu,v ’s are real numbers, but here, we normalize
all αu,v ’s to a number in [0, 1].

Finally in probabilistic k-cover, quantity αS,v ∈ [0, 1] is
provided for each pair of S ∈ F and v ∈ E: set S covers
element v with probability αS,v . A solution S ⊆ F covers
1 −

∏
S ∈S(1 − αS,v) fraction of element v. The objective then

is to find a solution S ⊆ F of cardinality k that maximizes∑
v ∈E

(
1 −

∏
S ∈S(1 − αS,v)

)
.

In the first problem, for simplicity we assume that all weights
are integers upper-bounded by a number U . Similarly, in the
second and the third problems, we assume that αS,v is a factor
of 1/U for any v ∈ S ∈ F .

THEOREM 3.1. There exists a four-round distributed algo-
rithm that finds a (1 − 1

e − ϵ)-approximate solution to element-

weighted k-cover, with probability 1 − 2
n . Moreover, each ma-

chine uses Õ(n) space in this algorithm.

THEOREM 3.2. There exists a four-round distributed algo-
rithm that reports a (1 − 1

e − ϵ)-approximate solution to facility

location, with probability 1 − 2
n . Moreover, no machine uses

more than Õ(n) space in this algorithm.

THEOREM 3.3. There exists a four-round distributed algo-
rithm, using Õ(n) space per machine, that finds a (1 − 1

e − 2ϵ)-
approximate solution to probabilistic k-cover with probability
1 − 3

n .

PROOF. Similarly we transform an instance of probabilistic
k-cover to one of k-cover: substitute each element v ∈ E with
ζ =

12(n+1+logn)U
ϵ 2 copies of v, and for each set S that contains

v we connect S to each copy of v with probability αS,v .
We show that with probability 1− 1

n , for all solutions S ⊆ F ,
the coverage of S in the k-cover instance is within a factor
ζ (1 ± ϵ/2) of that in the original probabilistic k-cover instance.
Fix a solutionS, and let βv = 1−

∏
S ∈S(1−αS,v). The Chernoff

bounds gives for X , the number of copies of v covered by S,
as follows.

Pr
(
|X − ζ βv | ≥ ζ βvϵ/2

)
≤ 2 exp

(
−
ζ βvϵ

2

12

)
= 2 exp

(
−

12(n+1+logn)U
ϵ 2 βvϵ

2

12

)
≤ 2 exp

(
−

12(n+1+logn)
ϵ 2 ϵ2

12

)
since βv ≥ 1/U ,

≤ 2 exp
(
− n + 1 + logn

)
≤ 2−n/n.

There are 2n choices for S, hence for all solutions S ⊆ F ,
the coverage of S on the k-cover instance is within the promised
interval with probability 1 − 1

n .
Since the number of elements in the k-cover instance is at

most ζm, the size of the sketch grows logarithmically in U .
To sample an element form the k-cover instance uniformly at
random, we sample an element from the original probabilistic
k-cover instance uniformly at random and connect it to each set
S ∈ F with probability αS,v . �

4 ALGORITHMS FOR OTHER
DISTRIBUTED MODELS

In this section we explain how our results apply to the RAM
model and continuous distributed monitoring model as well.

5

Recall that in the RAM model, we have random access to the
edge lists, however, each access takes O(1) time.

Algorithm 2 Abstract construction of the sketch
Input: Graph G(F ∪ E,E) and numbers k, ε ∈ (0, 1],δ ′′.

Output: Sketch H (VH ,EH) = H≤n (k, ε,δ
′′).

1: δ ← δ ′′ log log 1
1−ε

m

2: h : E 7→ [0, 1] uniform, independent hash function
3: VH ← F and EH ← ∅ ◃ Initialize
4: while |EH | <

24nδ log(1/ε) logn
(1−ε)ε3 do

5: v ← argminv ∈E\VH h(v)
6: VH ← VH ∪ {v}

7: Add min(n log(1/ε)
εk , |ΓG (v)|) edges of v to EH

THEOREM 4.1. There exists an algorithm that, given ran-
dom access to the edge lists of coverage instance G(F ∪ E,E),
computes the sketch H = H≤n in time Õ(n).

PROOF. We show how Algorithm 2 can run in the RAM
model. Since |EH | = Õ(n) at the end, total work done in Line 7
is Õ(n). In Line 2 we do not need to define the hash function
explicitly. When Line 5 seeks the next vertex, it is equivalent
to picking a random new vertex. We only need to keep a list of
already selected vertices to avoid repetition. �

Once the sketch is constructed we can run a sequential algo-
rithm on the sketch (or sketches) to solve k-cover and set cover
with outliers. The proof of the following is almost identical to
those of Theorems 2.2 and 2.5 and is omitted.

THEOREM 4.2. There is an Õ(n)-time, 1 − 1
e − ϵ-

approximation algorithm in the RAM model for k-cover.

THEOREM 4.3. There is an Õ(n)-time algorithm in the RAM
model that finds a (1 + ϵ) log 1

λ -approximate solution for set
cover with λ outliers.

To construct the sketch in the continuous distributed moni-
toring model, we construct a sketch on each client, using shared
random seeds, and send this to the server. On the server we con-
struct the sketch of the union of the received graphs using the
same random seeds as the clients. Notice that (1) if we remove
an edge that does not exist in the sketch it does not change the
sketch, and (2) if an edge exists in the sketch removing other
edges does not change the status of this edge. The second ob-
servation implies that all of the edges of the sketch of the input
graph is sent to the server. The first one indicates that ignoring
edges that are not in the sketch does not effect the outcome
and hence the outcome of the server is equivalent to the sketch
of the whole input. This yields the following two theorems,
whose proofs are similar to the above, and are deferred to the
full version.

THEOREM 4.4. There is a 1− 1
e −ϵ-approximation algorithm

in the continuous distributed monitoring model with Õ(n) space
per machine and Õ(n) communication per machine for k-cover.

THEOREM 4.5. There is an algorithm with Õ(n) space per
machine and Õ(n) communication per machine in the contin-
uous distributed monitoring model that finds a (1 + ϵ) log 1

λ -
approximate solution for set cover with λ outliers.

Table 3: General information about our datasets.

Name Type |F | |E | |E |
livej-3 dominating set 4M 4M 73B
livej-2 dominating set 4M 4M 3.4B
dblp-3 dominating set 320K 320K 330M
dblp-2 dominating set 320K 320K 27M
gutenberg bag of words 42K 100M 1B
s-gutenberg bag of words 925 11M 27M
reuters bag of words 200K 140K 15M
planted-A planted coverage 10K 10K 1.2M
planted-B planted coverage 100K 1M 1.2B
planted-C planted coverage 100K 10M 2.4B
planted-D planted coverage 101K 10M 1.2B
wiki-main contribution graph 2.9M 11M 75M
wiki-talk contribution graph 1.7M 1M 7.3M
news20 feature selection 1.4M 200M 4.3B

5 EMPIRICAL STUDY AND RESULTS
We begin by a brief overview of the datasets and corresponding
applications used in our empirical study (see Table 3), and then
move to the methodology as well as the experiment results.

We run our empirical study on five types of instances. A
summary is presented in Table 3. Dominating set instances in-
clude livej-3, livej-2, dblp-3 and dblp-2, where the ob-
jective is to cover the nodes via multi-hop neighborhoods. We
have two sets of bag-of-words instances, where the goal is to
cover as many words/bigrams via selecting a few documents:
gutenberg and s-gutenberg for books and reuters for news
articles. Instances wiki-main and wiki-talk are our contribu-
tion graphs where we want to find a set of users who revised
many articles. Finally we have some planted set-cover instances
that are known to fool the greedy algorithm: planted-A, etc.
As for the feature-selection application, we focus on news20
dataset that is discussed in detail in [3].

We remark that, to the best of our knowledge, some of these
datasets are an order of magnitude larger than what has been
considered in prior work.

5.1 Approach
Recall that the sketch construction consists of two types of
prunings for edges and vertices of the graph:
• subsampling the elements, and
• removing edges from large-degree elements.

The theoretical definition of the sketch provides (i) the prob-
ability ρ of sampling an element, and (ii) the upper bound σ
on their degrees. Though almost tight in theory, in practice one
can use smaller values for these two parameters to get desirable
solutions. Here we parameterize our algorithm by ρ and σ , and
investigate this phenomenon in our experiments.

The STOCHASTICGREEDY algorithm [23] achieves 1− 1
e −ε

approximation to maximizing monotone submodular func-
tions (hence coverage functions) with O(n log(1/ε)) calls to
the submodular function. This is theoretically the fastest known
1 − 1

e − ϵ approximation algorithm for coverage maximization,
and is the most efficient in practice for maximizing monotone
submodular functions, when the input is very large. Plugged
into our MapReduce algorithm, it runs much faster, and loses
very little in terms of quality. For smaller instances we compare

6

Figure 1: For the dominating-set instance livej-3, these plots show the number of covered nodes against the relative size of
the sketch with ρ ∈ [10−3, 3 · 10−2], σ ∈ [100, 5000], and k ∈ [102, 104]. Curves in one plot correspond to different choices for
σ . With large σ , the results of some runs are indistinguishable from the one next to it in the plot, hence invisible.

Figure 2: The results for dblp-3 are shown for ρ ∈ [2 ·
10−3, 5 ·10−2], σ = 100. We plot our performance relative to
STOCHASTICGREEDY against the fraction of edges from
the input graph retained in our sketch.

our algorithm to STOCHASTICGREEDY, but for larger ones we
provide convergence numbers to argue that the two should get
very similar coverage results.
LiveJournal social network We try different values for ρ,σ ,k
when running our algorithm on livej-3; see Figure 1. For
small k, the result improves as σ grows, but increasing ρ has
no significant effect. On the other hand, the improvement for
larger k comes from increasing ρ while σ is not as important.
This observation matches the definition of our sketch, in which

Figure 3: The above are results of running the algorithm
on the sampled version of dblp-3 with ρ = 0.02, σ = 100.
The x axis denotes the size of the sampled graph rela-
tive to the whole. The y axis shows the quality relative to
STOCHASTICGREEDY.

the degree bound is decreasing in k and the sampling rate is
increasing in k.
DBLP coauthorship network Figure 2 compares results of
our algorithm on dblp-3 (with a range of parameters) to that
of STOCHASTICGREEDY. Each point in these plots represents
the mean of three independent runs. Interestingly, a sketch with
merely 3% of the memory footprint of the input graph attains
%99.6 of the quality of STOCHASTICGREEDY.

7

Figure 4: Here we plot the number of covered bigrams
against ρ for gutenberg with ρ ∈ [10−5, 3 · 10−2], σ ∈
[102, 104], and k ∈ [102, 10003]. The curves corresponding
to different values of σ are practically indistinguishable.

Table 4: Results for other datasets.

Instance Sketch Quality InstanceSketch Quality
wiki-main 0.06% 94.4% dblp-2 1.7% 92%
wiki-main 2.4% 99.5% dblp-2 3.1% 96%
wiki-main 7.7% 99.9% reuters 1.2% 87%
wiki-talk 1.5% 99.2% reuters 3.6% 92%
planted-A 8.2% 96% reuters 10% 96%

We run our algorithm on induced subgraphs of dblp-3 of
varying sizes; see Figure 2. Interestingly, the performance of
our algorithm improves the larger the sampled graph becomes.
In other words, if one finds parameters ρ and σ on a subgraph
of the input and applies it to the whole graph, one does not lose
much in the performance.
Project Gutenberg dataset We run our algorithm on
gutenberg with different values for ρ and σ . As shown in Fig-
ure 4, the outcome of the algorithm converges quickly. In other
words, for ρ = 0.003 and σ = 100, the outcome of STOCHAS-
TICGREEDY on our sketch and on the input graph are quite
similar, while our sketch is 600 times smaller.
Other datasets Due to space constraints we cannot report de-
tailed results for the other datasets. However, Table 4 shows
that for these datasets, a small sketch suffices to get close to the
single-machine greedy solution. In fact, these are small enough
for the greedy algorithm to run on one machine.

The livej-2 instance is too big for the single-machine
greedy algorithm. Still we can compare our result to what
is achievable for a 10% sample of the instance (with about
340 million edges). With a 0.8% footprint we obtain a solution
of essentially the same quality. With footprints 0.3%, 0.2%,
0.1% and 0.75%, we lose no more than 1%, 3%, 4% and 9%,
respectively.

Except for the smallest, the planted instances are also too big
for the greedy algorithm. Nonetheless, looking at the numbers,
e.g., for planted-B, we notice that the quality of the greedy
solution is almost the same for sketches of relative sizes 0.3%
and 42%—the latter has about 500 million edges. In particular,

sketches of relative size 0.3%, 1% and 10% produce 3%, 2%
and 1% error, respectively, compared to the sketch of size 42%.
The results are similar for the other two planted instances.

Finally we compare our sketching technique to that in [20].
They present a technique that can be thought of as the second
part of our sketching method. We demonstrate in Figure 5 the
superiority of our method on two facility location datasets based
on the DBLP graph. Our method achieves the same solution
quality with much smaller memory footprint (i.e., sketch size).

5.2 Feature-selection Problem
Our algorithm is applicable to the feature-selection problem,
which is a first step in many learning-based applications [16],
where it is often too expensive to work with the entire matrix
or there might be overfitting concerns. Typically a small subset
of “representative” features are picked carefully, so as not to
affect the overall learning quality. In practice, we gauge the
performance of feature selection by reconstruction error or
prediction accuracy; see [3] for details of evaluation criteria.

In order to compare our preliminary results to previous
work [3], we model the problem as a maximum k-cover instance
by treating columns (i.e., features) as sets and pairs of rows
(i.e., pairs of sample points) as elements. We say a row covers
a pair of rows, if that column (feature) is active for both rows
(sample points), and seek to pick k columns that cover as many
pairs of rows as possible.7

Table 5 compares our results to prior work. Numbers show
prediction accuracy in percentage. For description of the data
set and the first four algorithms, see [3]. We note that these algo-
rithms may only run on a 8% sample of the dataset, hence poorer
performance compared to the latter two. The fifth column ex-
hibits a distributed version of 2-P (the two-phase optimization):
Features are carefully partitioned across many machines by
looking at a cut-based objective, and then the two-phase opti-
mization handles each part separately. It is noteworthy that the
(distributed) partitioning phase itself takes significant amount
of time to run. The last column corresponds to our distributed
k-cover algorithm, which is more efficient than the algorithm
of the fifth column. The results are similar to that of PART.

Table 5: Results for feature selection on news20 dataset.

k RND 2-P DG PCA PART COVER

500 54.9 81.8 80.2 85.8 84.5 86.2
1000 59.2 84.4 82.9 88.6 88.4 89.4
2500 67.6 87.9 85.5 90.6 92.3 91.2

We emphasize that we can run our algorithm on much larger
datasets; the evidence of this was provided above where we
reported results for livej-3, for instance.

6 CONCLUSIONS
In this paper, we present almost optimal distributed algorithms
for coverage problems. Our algorithms beat the previous ones
in several fronts: e.g., (i) they provably achieve the optimal

7We also studied covering rows as opposed to covering pairs of rows, but that
approach was not effective.

8

Figure 5: The left plot is for the unweighted dblp-2 instance, and the one on the right is for the weighted DBLP graph,
where the edge weights are the number of common neighbors of two nodes. Two curves in each plot correspond to the “lazy
greedy” algorithm run on our sketch or on the sketch introduced in [20]. We see the quality (i.e., coverage) relative to the
best solution obtained in terms of the sketch size. Notice that typically half the sketch size suffices for obtaining essentially
the same quality.

approximation factors for these problems, (ii) they run in only
four rounds of computation (as opposed to logarithmic number
of rounds), and (iii) their space complexity is independent of the
number of elements in the ground set. Moreover, our algorithms
can handle coverage problems with huge subsets (in which even
one subset of the input may not fit on a single machine). Our
empirical study shows practical superiority of our algorithms.
Finally, we identified a new application of our algorithms in
feature selection, and presented preliminary results for this
application. It would be nice to explore this application in more
details in the future.

REFERENCES
[1] Z. Abbassi, V. S. Mirrokni, and M. Thakur. Diversity maximization under

matroid constraints. In KDD, pages 32–40, 2013.
[2] A. V. Aho and J. E. Hopcroft. Design & Analysis of Computer Algorithms.

Pearson Education India, 1974.
[3] J. Altschuler, A. Bhaskara, G. Fu, V. S. Mirrokni, A. Rostamizadeh, and

M. Zadimoghaddam. Greedy column subset selection: New bounds and
distributed algorithms. In ICML, pages 2539–2548, 2016.

[4] A. Badanidiyuru, S. Dobzinski, H. Fu, R. Kleinberg, N. Nisan, and T. Rough-
garden. Sketching valuation functions. In SODA, pages 1025–1035, 2012.

[5] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming
submodular maximization: Massive data summarization on the fly. In KDD,
2014.

[6] A. Badanidiyuru and J. Vondrák. Fast algorithms for maximizing submodu-
lar functions. In SODA, pages 1497–1514, 2014.

[7] M. Bateni, A. Bhashkara, S. Lattanzi, and V. Mirrokni. Mapping core-sets
for balanced clustering. In NIPS, 2014.

[8] M. Bateni, H. Esfandiari, and V. Mirrokni. Almost optimal streaming
algorithms for coverage problems. In SPAA, pages 13–23, 2017.

[9] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and I/O
efficient set covering algorithms. In SPAA, pages 82–90, 2012.

[10] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification, monotone
submodular functions and dynamic updates. In PODS, pages 155–166,
2012.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage
system for structured data. In OSDI, 2006.

[12] F. Chierichetti, R. Kumar, and A. Tomkins. Max-Cover in Map-Reduce. In
WWW, pages 231–240, 2010.

[13] R. da Ponte Barbosa, A. Ene, H. L. Nguyen, and J. Ward. A new framework
for distributed submodular maximization. CoRR, abs/1507.03719, 2015.

[14] R. da Ponte Barbosa, A. Ene, H. L. Nguyen, and J. Ward. The power of
randomization: Distributed submodular maximization on massive datasets.
In ICML, pages 1236–1244, 2015.

[15] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In OSDI, pages 137–150, 2004.

[16] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, 2003.

[17] P. Indyk, S. Mahabadi, M. Mahdian, and V. Mirrokni. Composable core-sets
for diversity and coverage maximization. In PODS, 2014.

[18] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for
MapReduce. In SODA, pages 938–948, 2010.

[19] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy algo-
rithms in MapReduce and streaming. In SPAA, pages 1–10, 2013.

[20] E. Lindgren, S. Wu, and A. G. Dimakis. Leveraging sparsity for efficient
submodular data summarization. In NIPS, pages 3414–3422, 2016.

[21] A. McGregor and H. T. Vu. Better streaming algorithms for the maximum
coverage problem. In 20th International Conference on Database Theory,
ICDT 2017, March 21-24, 2017, Venice, Italy, pages 22:1–22:18, 2017.

[22] V. S. Mirrokni and M. Zadimoghaddam. Randomized composable core-sets
for distributed submodular maximization. In STOC, pages 153–162, 2015.

[23] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause.
Lazier than lazy greedy. In AAAI, pages 1812–1818, 2015.

[24] B. Mirzasoleiman, A. Karbasi, A. Badanidiyuru, and A. Krause. Distributed
submodular cover: Succinctly summarizing massive data. In NIPS, 2015.

[25] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed
submodular maximization: Identifying representative elements in massive
data. In NIPS, pages 2049–2057, 2013.

[26] B. Mirzasoleiman, M. Zadimoghaddam, and A. Karbasi. Fast distributed
submodular cover: Public-private data summarization. In NIPS, pages
3594–3602, 2016.

[27] H. T. Nguyen, M. T. Thai, and T. N. Dinh. Stop-and-stare: Optimal sampling
algorithms for viral marketing in billion-scale networks. In Proceedings of
the 2016 International Conference on Management of Data, pages 695–710.
ACM, 2016.

[28] B. Saha and L. Getoor. On maximum coverage in the streaming model &
application to multi-topic blog-watch. In SDM, volume 9, pages 697–708,
2009.

[29] K. Wei, R. K. Iyer, and J. A. Bilmes. Fast multi-stage submodular maxi-
mization. In ICML, pages 1494–1502, 2014.

9

	Abstract
	1 Introduction
	2 Algorithms for k-cover and set cover
	3 More general submodular functions
	4 Algorithms for Other Distributed Models
	5 Empirical Study and Results
	5.1 Approach
	5.2 Feature-selection Problem

	6 Conclusions
	References

