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Abstract

We study three coverage problems—minimum set cover, maximum k-cover, and
minimum set cover with outliers—in large-scale settings. Our main contribution
is a simple yet powerful sketch for these problems that leads to almost optimal al-
gorithms in streaming, MapReduce and RAM models. The optimality is measured
in terms of the running time, approximation guarantee, space complexity, as well
as number of rounds/passes of computation. These results are complemented by
demonstrating why natural sketches are not sufficient to solve these problems. We
further study extending the algorithms to several weighted variants of set cover,
as well as facility location, dominating set, and a large class of submodular maxi-
mization problems.
Our extensive empirical study illustrates the effectiveness of the new algorithms.
Here we consider a variety of set-cover instances (bag-of-word document summa-
rization, collaboration networks, dominating set) as well as a real application for
feature selection. We observe that using sketches 30–600 times smaller than the
input, one can solve the coverage maximization problem with quality very close
to that of the state-of-the-art single-machine algorithm.

1 Introduction

Maximum coverage and minimum set cover problems are among the most fundamental problems in
optimization and computer science. Not only have they been instrumental for development of new
techniques, but they also have numerous applications in theory and practice, either directly or as sub-
routine in other algorithms. Notably there are a variety of practical applications in machine learning
or data mining (say, for data summarization and web mining); see, e.g., [11, 17] and references
therein.

More formally we study the following problems. Consider a family S of n subsets of a ground
set I of m items. In the minimum set cover problem, we look for the smallest number of sets in
S that collectively cover I; in other words, their union is exactly I . A “dual” to this task is the
maximum k-cover problem, where given an additional parameter k, the goal is to find k sets from
S so as to maximize the size of their union. We also study a less known problem that provides a
middle ground between the two. The input to the minimum set cover with outliers problem includes a
parameter 0 ≤ λ ≤ 1 in addition to the set specification S . Here we aim to find the smallest number
of sets whose union covers at least a 1− λ fraction of I .

Nowadays there is an inevitable need to handle many optimization problems at large scale [47, 46,
20, 8, 16, 15, 20, 32]. Older methods typically cannot cope with huge amounts of data. Firstly,

∗This extended abstract summarizes the main results of [12, 13, 14], which contain all the proofs as well as
additional discussion. Core sketching results and the discussion of the streaming implementation appear in [12],
whereas [13] contains MapReduce and RAM results as well as an extensive empirical study and extension to
the weighted setting. Part of the results was presented at SPAA 2017 [14].
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polynomial running time is no longer a satisfactory test for usability of an algorithm. Second,
the entire data set may not fit on the memory of a single machine. Several new computational
models have been proposed to address these hurdles. The most famous are the streaming setting, the
MapReduce framework, and the RAM model. The first two are quite popular and well-known but
we also include the last one, because we think that development of multicore processors and shared
memory architectures will once again bring such models into focus.

The streaming setting places the main restriction on the available memory. A single processor re-
ceives the data set, one small piece at a time (perhaps in an adversarial order), and is required to
output the result at the end, once the stream has been fully processed. The algorithm may in some
cases get the opportunity of having multiple passes over the input. However, it can never carry
large amount of information. The metrics to optimize here (beside the accuracy of the solution) are
running time at each step, total memory requirement, and number of passes.

Two standard arrival models are studied for graph problems in the streaming literature. In the edge-
arrival model, edges of the input graph are given to the algorithm one at a time in an arbitrary
(possibly adversarial) order. The vertex-arrival model, though, assumes that vertices appear one by
one, and upon arrival each vertex is given to the algorithm along with all its edges. Often solving
a problem in the edge-arrival model is more challenging that doing the same in the vertex-arrival
model. In the context of coverage problems, we refer to these models as set- and edge-arrival
models, because we sometimes think of a set system as a bipartite graph between sets and items
(with edges denoting membership relations).

Another popular approach towards the problem of handling large data is the MapReduce frame-
work [22], which serves as the standard in industrial distributed computation. Several attempts have
been made to formalize a theoretical model for this framework and we focus on the most famous.
A sublinear number of machines, each with sublinear memory, are available to the algorithm. At
the beginning of one round, the data is somehow sent (i.e., “mapped”) to different machines. Then
comes the Map phase, when each machine processes the data it receives and sends the (possibly
different) results to certain machines. Next in the Reduce phase, every machine processes the Map
phase results sent to it, and outputs the final results. This Map/Reduce computation may go on for
many rounds. However, the memory available to each machine, the time for each Map or Reduce
phase, as well as the number of rounds should be limited.

In the RAM model [5], we have one processor—can be extended to several—that has random access
to any part of the huge data set. The caveat is that each “read” takes some amount of time, hence
reading all the input is not practical. In this respect, it is similar to the streaming setting but the
algorithm has the opportunity to choose which parts of the input it looks at.

2 Results and related work

Recall that the input consists of n sets S = {S1, S2, . . . , Sn} of a possibly much larger universe of
size m. We prove the existence of a new set system H = {H1, H2, . . . ,Hn} such that Hi ⊆ Si
for each 1 ≤ i ≤ n. The definition of our sketch, H, depends on a constant parameter ε > 0. This
sketch has two crucial properties:

1. It is manageable, i.e., the total size of the sketch is small. More formally
∑
i |Hi| =

O(npoly logm).

2. It is applicable: With high probability, any α-approximate solution to the maximum k-cover
instance defined by H is an α− ε-approximate solution to the original instance defined by
S.

We further demonstrate how this sketch can indeed be constructed efficiently on each of the three
large-scale computational models. This leads to a straightforward algorithm for maximum k-cover:
Build the sketch and apply the best sequential algorithm to the sketch. Since the sketching step
reduces the instance size to fit in memory (or be within the permissible number of reads in the RAM
model), any efficient sequential algorithm may be used in the second step. In particular, though,
there are almost linear-time sequential algorithms for maximum k-cover [42].

The three problems discussed in this manuscript are known to be NP-hard [29]. Moreover, we know
that they are APX-hard [24]: there exists a constant lower bound on the approximation guarantee of
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Table 1: Comparison of our results [13] for MapReduce model to prior work. The first three work
for the more general case of submodular maximization.

Problem Credit Number of rounds Approximation factor Load per machine
k-cover [38] O( 1

εδ logm) 1− 1
e − ε O(mknδ)

k-cover [41] 2 0.54 max(mk2,mn/k)

k-cover [21] 1
ε 1− 1

e − ε
max(mk2,mn/k)

ε

k-cover [13] 4 1− 1
e − ε Õ(n)

set cover with outliers [13] 4 (1 + ε) log 1
λ Õ(n)

submodular cover [43] Ω(n
1
6 ) Ω(n

1
6 ) Õ(mn)

submodular cover [44] O( logn logm
ε ) (1 + ε) log 1

λ Õ(mn)

set cover with outliers [13] 4 (1 + ε) log 1
λ Õ(n)

dominating set [13] 4 (1 + ε) log 1
λ Õ(n)

any polynomial-time algorithm, assuming P 6= NP. In fact, the lower bound is logarithmic for set
cover and set cover with outliers problems. These negative results, in particular, rule out the existence
of a polynomial-time approximation scheme (PTAS).

Interestingly even in the non-distributed setting, there are simple greedy algorithms that achieve
approximation factors essentially matching the lower bounds: 1 − 1

e for k-cover and O(log n) for
the other two problems. The algorithms summarized have similar, optimal approximation factors.

We further demonstrate that our algorithms use almost optimal space. Specifically we prove that
in the streaming setting, it is impossible to have an approximation factor better than 1

2 for k-cover
in o(n) space. (There is no complexity assumption here, as the proof relies on a communications
complexity argument.) We claim almost optimal space consumption, because our algorithms use
quasi-linear space: Õ(n) = O(npoly(log n, logm)).

Coverage problems have been studied extensively in the context of set-arrival models [8, 47, 46, 25,
16]. Most of these give suboptimal approximation guarantees. In particular, Saha and Getoor [47]
provide a 1

4 -approximation algorithm for k-cover in one pass using Õ(m) space. The same technique
gives a Θ(logm) approximation algorithm for set cover in Θ(logm) passes, using Õ(m) space.
On the hardness side, interestingly, Assadi et al. [8] show that there is no α-approximation one-
pass streaming algorithm for set cover using o(nm/α) space. Demaine et al. [23] provide (for
any positive integer r) a 4r logm-approximation algorithm for the set cover problem in 4r passes
using Õ(nm1/r + m) space2. Recently, Har-Peled et al. improves this result and provide a p-pass
O(p logm)-approximation algorithm in Õ(nmO(1/p) + m) space2. Indeed, all the above results
hold only for the set-arrival model, whereas our results are for the more general edge-arrival model.
Tables 1 and 2 summarize our theoretical results and compare them to prior work.

Often in the graph streaming problems, while the size of the input is Õ(|E|) for a graph G(V,E),
the solution size may be as large as Ω(|V |). The best hope then is to find the solution in Õ(|V |)
space. Algorithms fitting this description are called semi-streaming [45], and many graph problems
have been studied in this setting [2, 3, 26, 28, 35, 36, 37]. On the other hand, the extensive work on
edge-arrival streaming [4, 7, 9, 18, 27, 33, 34] had not (prior to our work) studied coverage problems.

3 A new sketch

One strategy to solve the problem is to build an oracle that allows one to estimate the quality of any
given solution. Let us define the coverage function f : 2S 7→ R as f(A) = |

⋃
A∈AA|. Our goal

then is to find a subcollection of S of size k that maximizes f .

Suppose we have access to an oracle that computes fε : 2S 7→ R such that

(1− ε)f(A) ≤ fε(A) ≤ (1 + ε)f(A) ∀A ⊆ S.
2The space bounds claimed in [23, 31] assume m = O(n), hence stated differently.
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Table 2: Comparison of results [14] for streaming model to prior work. Note that all our results for
edge-arrival model also hold for the set-arrival model.

Problem Credit No. of passes Approx. factor Space Arrival
k-cover [47] 1 1/4 Õ(m) set
k-cover [11] 1 1/2 Õ(n+m) set
k-cover [14] 1 1− 1/e− ε Õ(n) edge

set cover with outliers [25, 16] p O(min(n
1

p+1 , e−
1
p )) Õ(m) set

set cover with outliers [14] 1 (1 + ε) log 1
λ Õλ(n) edge

set cover [16, 47] p (p+ 1)m
1

p+1 Õ(m) set
set cover [23] 4r 4r logm Õ(nm

1
r +m) set

set cover [31] p O(p logm) Õ(nmO( 1
p ) +m) set

set cover [14] p (1 + ε) logm Õ(nmO( 1
p ) +m) edge

It might sound reasonable that such an oracle suffices for solving the problem: In particular, if such
an oracle can be created quickly with small space (say, via sampling), then the resulting algorithm
would be a good distributed algorithm for k-cover.

Unfortunately, though, we prove that this is not possible: Any α-approximate algorithm for k-cover
that only uses fε to access the data requires exp

(
Ω(nε2α2−log n)

)
queries to the oracle. Therefore,

there is no polynomial-time n−0.49-approximation algorithm for k-cover using the oracle fε as a
black box.

We remark that our sketch is fairly similar to `0 sketches [19], which are essentially defined to
estimate the value of coverage functions. Indeed, one may maintain n instances of the `0 sketch,
and estimate the value of the coverage function of a single feasible solution of size k with high
probability. However, having

(
n
k

)
different choices for a solution of size k leads to a huge blow-

up on the failure probability of at least one such solution. We show a straightforward analysis to
approximate k-cover using `0 sketches with Õ(nk) space, which is quite larger than our sketch.

We present a new sketching technique that does not suffer from the shortcomings identified above.
Conceptually this is done in two stages, and relies on two parameters 0 < p ≤ 1 and 0 < ∆ ≤ n. In
the first stage, we sample a subset I ′ ⊆ I by selecting each item independently with probability p.
The other items are removed from the set system. In other words, this turns S = {S1, S2, . . . , Sn}
into another family F = {F1, F2, . . . , Fn}, where Fi = Si ∩ I ′ for 1 ≤ i ≤ n. Then the second
stage removes some “edges” (between sets and items) or in other words restricts the frequency of
items in the set system: Items are arbitrarily removed from sets, so that no item appears in more than
∆ sets. More formally, we construct a familyH = {H1, H2, . . . ,Hn} such that

1. Hi ⊆ Fi for 1 ≤ i ≤ n;

2. |{H ∈ H | e ∈ H}| ≤ ∆ for each e ∈ I ′; and

3. H is maximal in the sense that adding any item to a set in H violates one of the above
properties.

Both stages are necessary to guarantee the desired properties of the sketch. Roughly speaking, the
first reduces the number of items to be near-linear in terms of the number of sets. Concentration
bounds show that with high probability, this operation preserves (up to a factor p) the size of the
union of every subcollection of sets. However, the total size of the produced sets might still be large,
as the frequency of certain items may be large. The second stage is based on the observation that,
roughly speaking, a logarithmic maximum frequency for items suffices to preserve the union size
for the optimal solution to k-cover.

The following theorem summarizes our sketch and lies at the core of all our algorithms.

Theorem 1 ([12]). Consider a set system S = {S1, S2, . . . , Sn} on a ground set of size m. Given
parameters δ ≥ 1, 0 < ε < 1 and 1 ≤ k ≤ n, we build the sketch H = {H1, H2, . . . ,Hn} with
parameters p and ∆ defined as follows. Let Uk be the maximum size of the union of k sets from H,
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and define

p =
6kδ log log1+εm

ε2Uk
, ∆ =

n log 1
ε

εk
.

Then with probability 1− 3e−δ we obtain the following two properties.

1. There is an upper bound on the total size of theH:
n∑
i=1

|Hi| ≤ g(n,m, δ) =
24nδ log 1

ε log log1+εm log n

(1− ε)ε3
.

2. Any α-approximate solution for k-cover on H produces an α − 12ε-approximate solution
for the same problem on the original set system S.

4 Algorithms

To solve the k-cover problem, one sketch from Theorem 1 is sufficient: Build a sketch and solve
the problem on the sketch. However, to solve the other two problems (set cover and set cover with
outliers), we construct logarithmically many such sketches (simultaneously) and solve the problem
on each. This is done because we do not know the proper value for k in these problems. It is
guaranteed that one sketch is built with a good approximation of k, hence the resulting solution
from that sketch is our desired solution.

It remains to show how to construct the sketch in each of the large-scale settings, because the re-
sulting sketch is small enough to run the algorithm on at the end (on MapReduce, streaming or the
RAM model). Here we discuss sketch construction only for streaming. Refer to [13] for the other
two models.

There is a caveat in Theorem 1. It seems that the “correct” value of p depends on the optimal
coverage Uk. Next we demonstrate how the knowledge of Uk is not necessary. Let us parameterize
the sketch by the probability p as Hp. Picking a larger value for p than the correct one does not
harm the second property in the theorem statement, but it could possibly violate the first property
(and lead to superquasilinear sketch size). Let p∗ be the smallest value for p that makes total sketch
size exceed g(n,m, δ). (For simplicity of exposition we are ignoring the probabilistic nature of
the sketch size.) Then the theorem suggests that the correct value of p cannot be larger than p∗.
Therefore we can safely use p∗ in the construction of the sketch.

Solving the other two problems requires additional ideas. For a given set system S, let Opt(S, k)
denote the maximum coverage of k sets from S. Define Greedy(S, k) as the coverage of the greedy
algorithm on an instance defined by the set system S and parameter k. The 1 − 1

e approximation
guarantee of the greedy algorithm implies Greedy(S, k) ≥ (1− 1

e )Opt(S, k). Slight changes to the
argument gives the following for any α > 1:

Greedy(S, k logα) ≥ (1− 1/α)Opt(S, k). (1)

Roughly speaking, one can repeat the greedy algorithm logα times to achieve this.

Let q be the size of the optimal solution for set cover with λ outliers on set system S; i.e., Opt(S, q) ≥
(1 − λ)|I| where I is the ground set over which S is defined. Combining (1) with our k-cover
algorithm guarantees that, for any fixed ε > 0, we can find a solution of size q log 1

λ′ covering
1 − λ′ − ε fraction of the items with high probability. Roughly speaking we can search through a
logarithmic number of possibilities (in a geometric progression) and find a solution of size at most
O(q log 1

λ ) that covers a 1 − λ fraction of the items. We show in [12] how to set the parameters λ′
and ε properly.

The algorithm for set cover solves r − 1 instances of set cover with λ outliers (for λ = m−
1

2+r ),
each on the residual instance of yet uncovered items. At most mλr−1 = m

3
2+r items may still be

uncovered by the union of the solutions from these r−1 instances. A sequential set cover algorithm
is used at the end to cover all the remaining items. We show that the total memory used in each
round of this algorithm is bounded by Õ(nmO(1/r) + m), hence there is a tradeoff between the
number of rounds and the space usage.
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5 Extensions

We extend our results to three classes of submodular functions:

1. In element-weighted k-cover, a weight wv is associated with each element v ∈ I , and the
objective is to maximize the total weight of covered elements.

2. An instance of facility location problem contains a quantity αu,v ∈ [0, 1] for each S ∈
S, v ∈ I , denoting that set S covers αS,v fraction3 of element v. A solution S ′ ⊆ S covers
maxS∈S′ αS,v fraction of element v. Here the objective is to find a solution S ′ ⊆ S of size
k that maximizes

∑
v∈I maxS∈S′ αS,v .

3. Finally in probabilistic k-cover, quantity αS,v ∈ [0, 1] is provided for each pair of S ∈ S
and v ∈ I: set S covers element v with probability αS,v . A solution S ′ ⊆ S covers
1−

∏
S∈(1− αS,v) fraction of element v. The objective then is to find a solution S ′ ⊆ S

of cardinality k that maximizes
∑
v∈I

(
1−

∏
S∈S′(1− αS,v)

)
.

In [13] we present distributed algorithms for these problems.
Theorem 2. For each of the three variants defined above (i.e., element-weighted k-cover, facility
location and probabilistic k-cover), and for every fixed ε > 0, there exists a four-round distributed
algorithm that uses Õ(n) space per machine and finds a 1 − 1

e − ε approximate solution with
probability 1−O( 1

n ).

We remark at this point that extending to these variants is possible only because the size of our
new sketch is independent of (or to be more precise, depends logarithmically on) the number of
elements. In fact, the reductions we present for the above problems significantly increase the number
of elements in the instance.

6 Empirical study

We perform a comprehensive empirical study of our algorithm for k-cover (implemented in MapRe-
duce) on a variety of data sets. We consider social graphs such as LiveJournal [48], collaboration
networks such as DBLP [10] and Wikipedia [39], bag-of-words data sets such as news20 (discussed
in [6]), reuters [40] and one based on bigrams in books from Project Gutenberg [1], as well as
planted set-cover instances that are known to be hard theoretically. These data sets have up to 4
million sets, 200 million elements, and 73 billion set-element edges; to our best knowledge, these
are an order of magnitude larger than the data sets used in other reported k-cover experiments.

Recall that our sketch is parameterized by p and ∆. The theoretical values for these lead to relatively
large sketches for the big data sets we study. However we observe that using sketches 30–600 times
smaller than the input, one can still solve the coverage maximization problem with quality very close
to that of the state-of-the-art single-machine algorithm.

Our algorithm is applicable to the feature-selection problem, which is a first step in many learning-
based applications [30], where it is often too expensive to work with the entire matrix or there might
be overfitting concerns. Typically a small subset of “representative” features are picked carefully,
so as not to affect the overall learning quality. In practice, we gauge the performance of feature
selection by reconstruction error or prediction accuracy; see [6] for details of evaluation criteria.

In order to compare our preliminary results to previous work [6], we model the problem as a max-
imum k-cover instance by treating columns (i.e., features) as sets and pairs of rows (i.e., pairs of
sample points) as elements. We say a row covers a pair of rows, if that column (feature) is active for
both rows (sample points), and seek to pick k columns that cover as many pairs of rows as possible.

Comparison with previous work illustrates the scalability and quality of our algorithm. While previ-
ous algorithms could only run on a 8% sample of the dataset, our method comfortably processes the
entire data. The quality of our results unsurprisingly is better than four of the five methods explained
in [6]; their other algorithm, whose quality is on par with ours, is much slower than our distributed
algorithm.

3In general, in facility location, αu,v’s are real numbers, but here, we normalize all αu,v’s to a number in
[0, 1].
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[30] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal
of Machine Learning Research, 3:1157–1182, 2003.

[31] Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards tight bounds for
the streaming set cover problem. In PODS, 2016.

[32] Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab Mirrokni. Composable
core-sets for diversity and coverage maximization. In PODS, 2014.

[33] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In SODA, pages 734–751, 2014.

[34] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approxi-
mating MAX-CUT. In SODA, pages 1263–1282, 2015.

[35] Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting. In
STACS, pages 440–451, 2011.

[36] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In APPROX, pages 231–242, 2012.

[37] Christian Konrad and Adi Rosén. Approximating semi-matchings in streaming and in two-
party communication. In ICALP, pages 637–649, 2013.

[38] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algo-
rithms in MapReduce and streaming. In SPAA, pages 1–10, 2013.

[39] Jure Leskovec, Dan Huttenlocher, and Jon Kleinberg. Governance in social media: A case
study of the Wikipedia promotion process. In AAAI, 2010.

[40] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

[41] Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for dis-
tributed submodular maximization. In STOC, pages 153–162, 2015.

[42] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and An-
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