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Abstract
As massive graphs become more prevalent, there is a rapidly growing need for scalable al-

gorithms that solve classical graph problems, such as maximum matching and minimum vertex
cover, on large datasets. For massive inputs, several different computational models have been
introduced, including the streaming model, the distributed communication model, and the mas-
sively parallel computation (MPC) model that is a common abstraction of MapReduce-style
computation. In each model, algorithms are analyzed in terms of resources such as space used
or rounds of communication needed, in addition to the more traditional approximation ratio.

In this paper, we give a single unified approach that yields better approximation algorithms
for matching and vertex cover in all these models. For example, we give:
• The first one pass, significantly-better-than-2-approximation for matching in the random

arrival order streaming model that uses subquadratic space, namely a 1.5-approximation
streaming algorithm that uses Õ(n1.5) space.

• The first 2 round, better-than-2-approximation for matching in the MPC model that uses
subquadratic space per machine, namely a 1.5-approximation algorithm with Õ(

√
mn+n)

memory per machine.

By building on our unified approach, we further develop parallel algorithms in the MPC
model that give a (1+ε)-approximation to matching and an O(1)-approximation to vertex cover
in only O(log log n) MPC rounds and O(n/polylog(n)) memory per machine. These results settle
multiple open questions posed in the recent paper of Czumaj et al. [STOC 2018].

We obtain our results by a novel combination of two previously disjoint set of techniques,
namely randomized composable coresets and edge degree constrained subgraphs (EDCS). We
significantly extend the power of these techniques and prove several new structural results. For
example, we show that an EDCS is a sparse certificate for large matchings and small vertex
covers that is quite robust to sampling and composition.
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1 Introduction
As massive graphs become more prevalent, there is a rapidly growing need for scalable algorithms
that solve classical graph problems on large datasets. When dealing with massive data, the entire
input graph is orders of magnitude larger than the amount of storage on one processor and hence any
algorithm needs to explicitly address this issue. For massive inputs, several different computational
models have been introduced, each focusing on certain additional resources needed to solve large-
scale problems. Some examples include the streaming model, the distributed communication model,
and the massively parallel computation (MPC) model that is a common abstraction of MapReduce-
style computation (see Section 2 for a definition of MPC). The target resources in these models are
the number of rounds of communication and the local storage on each machine.

Given the variety of relevant models, there has been a lot of attention on designing general
algorithmic techniques that can be applicable across a wide range of settings. We focus on this task
for two prominent graph optimization problems: maximum matching and minimum vertex cover.
Our main result (Section 1.2) presents a single unified algorithm that immediately implies sig-
nificantly improved results (in some or all of the parameters involved) for both problems in all three
models discussed above. For example, in random arrival order streams, our algorithm computes an
(almost) 3/2-approximate matching in a single pass with Õ(n1.5) space; this significantly improves
upon the approximation ratio of previous single-pass algorithms using subquadratic space, and is
the first result to present strong evidence of a separation between random and adversarial order for
matching. Another example is in the MPC model: Given Õ(n1.5) space per machine, our algorithm
computes an (almost) 3/2-approximate matching in only 2 MPC rounds; this significantly improves
upon all previous results with a small constant number of rounds.

Our algorithm is built on the framework of randomized composable coreset, which was recently
suggested by Assadi and Khanna [12] as a means to unify different models for processing massive
graphs (see Section 1.1). A common drawback of unified approaches is that although they have
the advantage of versatility, the results they yield are often not as strong as those that are tailored
to one particular model. It is therefore perhaps surprising that we can design essentially a single
algorithm that improves upon the state-of-the-art algorithms in all three models discussed above
simultaneously. Our approach for the matching problem notably goes significantly beyond a 2-
approximation, which is a notorious barrier for matching in all the models discussed above.

We also build on our techniques to achieve a second result (Section 1.3) particular to the
MPC model. We show that when each machine has only O(n) space (or even O(n/polylog(n))),
O(log log n) rounds suffice to compute a (1 + ε)-approximate matching or a O(1)-approximate ver-
tex cover. This improves significantly upon the recent breakthrough of Czumaj et al. [29], which
does not extend to vertex cover, and requires O(log log2(n)) rounds. Our results in this part settle
multiple open questions posed by Czumaj et al. [29].

1.1 Randomized Composable Coresets
Two examples of general techniques widely used for processing massive data sets are linear sketches
(see e.g. [5,6,14,23,25,26,51,52,60]) and composable coresets (see e.g. [12,15,16,18,48,62,63]). Both
proceed by arbitrarily partitioning the data into smaller pieces, computing a small-size summary
of each piece, and then showing that these summaries can be combined into a small-size summary
of the original data set. This approach has a wide range of applications, but strong impossibility
results are known for both techniques for the two problems of maximum matching and minimum
vertex cover that we study in this paper [14].

Recently, Assadi and Khanna [12] turned to the notion of randomized composable coresets—
originally introduced in the context of submodular maximization by Mirrokni and Zadimoghadam [62]
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(see also [30])—to bypass these strong impossibility results. The idea is to partition the graph into
random pieces rather than arbitrary ones. The authors in [12] designed randomized composable
coresets for matching and vertex cover, but although this led to unified algorithms for many models
of computation, the resulting bounds were still for the most part weaker than the state-of-the-art
algorithms tailored to each particular model.

We now define randomized composable coresets in more detail; for brevity, we refer to them
as randomized coresets. Given a graph G(V,E), with m = |E| and n = |V |, consider a random
partition of E into k edge sets

{
E(1), . . . , E(k)

}
; each edge in E is sent to exactly one of the E(i),

picked uniformly at random, thereby partitioning graph G into k subgraphs G(i)(V,E(i)).

Definition 1 (Randomized Composable Coreset [12, 62]). Consider an algorithm ALG that takes
as input an arbitrary graph and returns a subgraph ALG(G) ⊆ G. ALG is said to output an α-
approximate randomized coreset for maximum matching if given any graph G(V,E) and a random k-
partition of G into G(i)(V,E(i)), the size of the maximum matching in ALG(G(1))∪ . . .∪ALG(G(k))
is an α-approximation to the size of the maximum matching in G. We refer to the number of
edges in the returned subgraph by ALG as the size of the coreset. Randomized coresets are defined
analogously for minimum vertex cover and other graph problems.

It is proven in [12] that any O(1)-approximate randomized coreset for matching or vertex cover
has size Ω(n). Thus, similarly to [12], we focus on designing randomized coresets of size Õ(n),
which is optimal within logarithmic factors. Any α-approximate randomized coreset of size Õ(n)
for matching or vertex cover immediately yields the following algorithms for these problems on a
graph G(V,E) with n vertices and m edges: (see Proposition 6.1 for more details and proofs.)

• Streaming: An α-approximation single-pass streaming algorithm on random arrival streams
using Õ(

√
mn+ n) = Õ(n1.5) space.

• MPC: An α-approximation MPC algorithm in two rounds with O(
√
m/n) machines, each

with Õ(
√
mn+ n) = Õ(n1.5) memory.

• Distributed: An α-approximation simultaneous communication protocol on randomly par-
titioned inputs using Õ(n) communication per machine/player.

1.2 First Result: Improved Algorithms via a New Randomized Coreset
As our first result, we develop a new randomized composable coreset for matching and vertex cover.

Result 1. There exist randomized composable coresets of size Õ(n) that for any constant ε > 0,
give a (3/2+ε)-approximation for maximum matching and a (2+ε)-approximation for minimum
vertex cover with high probability.

Our results improve upon the randomized coresets of [12] that obtained O(1) and O(log n) ap-
proximation to matching and vertex cover, respectively. Our approach is entirely different, and in
particular we go beyond the ubiquitous 2-approximation barrier for matching (in Section 8.3 of the
full version, we show that the previous approach of [12] provably cannot go below 2.). Result 1
yields a unified framework that improves upon the state-of-the art algorithms for matching and
vertex cover across several computational models, for some or all the parameters involved.

First implication: streaming. We consider single-pass streaming algorithms. Computing a 2-
approximation for matching (and vertex cover) in O(n) space is trivial: simply maintain a maximal
matching. Going beyond this barrier has remained one of the central open questions in the graph
streaming literature since the introduction of the field [38]. No o(n2)-space algorithm is known
for this task on adversarially ordered streams and the lower bound result by Kapralov [49] (see
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also [41]) proves that an
(

e
e−1

)
-approximation requires n1+Ω(1/ log logn) space. To make progress on

this fascinating open question, Konrad et al. [55] suggested the study of matching in random arrival
streams. They presented an algorithm with approximation ratio strictly better than 2, namely 2−δ
for δ ≈ 0.002, in O(n) space over random streams. A direct application of our Result 1 improves
the approximation ratio of this algorithm significantly albeit at a cost of a larger space requirement.

Corollary 1. There exists a single-pass streaming algorithm on random arrival streams that uses
Õ(n1.5) space and with high probability (over the randomness of the stream) achieves an (almost)
(3/2)-approximation to the maximum matching problem.

Our results provide the first strong evidence of a separation between random-order and adversarial-
order streams for matching, as it is the first algorithm that beats the ratio of

(
e
e−1

)
, which is known

to be “hard” on adversarial streams [49]. Although the lower bound of [49] does not preclude
achieving the bounds of Corollary 1 in an adversarial order (because our space is Õ(n1.5) rather
than Õ(n)), the proof in [49] (see also [41]) suggests that achieving such bounds is ultimately con-
nected to further understanding of Ruzsa-Szemerédi graphs, a notoriously hard problem in additive
combinatorics (see e.g. [8,39,43]). From a different perspective, most (but not all) streaming lower
bounds are proven by bounding the (per-player) communication complexity of the problem in the
blackboard communication model, including the

(
e
e−1

)
lower bound of [49]. Our algorithm in Re-

sult 1 can be implemented with Õ(n) (per-player) communication in this model which goes strictly
below the lower bound of [49], thus establishing the first provable separation between adversarial-
and random-partitioned inputs in the blackboard model for approximating matchings.

Second implication: MPC. Maximum matching and minimum vertex cover are among the
most studied graph optimization problems in the MPC and other MapReduce-style computation
models [4, 5, 12, 20, 29, 45, 56]. As an application of Result 1, we obtain efficient MPC algorithms
for matching and vertex cover in only two rounds of computation.

Corollary 2. There exist MPC algorithms that with high probability achieve an (almost) (3/2)-
approximation to matching and an (almost) 2-approximation to vertex cover in two MPC rounds
and Õ(

√
mn+ n) memory per machine1.

It follows from the results of [14] that sub-quadratic memory is not possible with one MPC round,
so two rounds is optimal. Furthermore, our implementation only requires one round if the input is
distributed randomly in the first place; see [62] for details on when this assumption applies.

Our algorithms outperform the previous algorithms of [12] for matching and vertex cover in terms
of approximation ratio (3/2 vs. O(1) and 2 vs. O(log n)), while memory and round complexity are
the same. Our matching algorithm outperforms the 2-approximate maximum matching algorithm
of Lattanzi et al. [56] in terms of both the approximation ratio (3/2 vs. 2) and round complexity
(2 vs. 6) within the same memory. Our result for the matching problem is particularly interesting
as all other MPC algorithms [4, 5, 20] that can achieve a better than two approximation (which is
also a natural barrier for matching algorithms across different models) require a large (unspecified)
constant number of rounds. Achieving the optimal 2 rounds is significant in this context, since
the round complexity of MPC algorithms determines the dominant cost of the computation (see,
e.g. [19, 56]), and hence minimizing the number of rounds is the primary goal in this model.

Third implication: distributed simultaneous communication. Maximummatching (and to
a lesser degree vertex cover) has been studied previously in the simultaneous communication model

1The approximation factor for vertex cover degrades to 4 if one requires local computation on each machine to be
polynomial time; see Remarks A.1 and 10.2 in the full version.
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owing to many applications of this model, including in achieving round-optimal distributed algo-
rithms [12], proving lower bounds for dynamic graph streams [7, 13, 14, 54], and applications to
mechanism design [9, 32,33]. As an application of Result 1, we obtain the following corollary.

Corollary 3. There exist simultaneous communication protocols on randomly partitioned inputs that
achieve (almost) (3/2)-approximation to matching and (almost) 2-approximation to vertex cover with
high probability (over the randomness of the input partitioning) with only Õ(n) communication per
machine/player.

This result improves upon the O(1) and O(log n) approximation of [12] (on randomly partitioned
inputs) for matching and vertex cover that were also designed by using randomized coresets. Our
protocols achieve optimal communication complexity (up to polylog(n) factors) [12].

1.3 Second Result: MPC with Low Space Per Machine
Our second result concerns the MPCmodel with per-machine memoryO(n) or evenO(n/polylog(n)).
This is achieved by extending our Result 1 from random edge-partitioned subgraphs (as in random-
ized coresets) to random vertex-partitioned subgraphs (which we explain further below).

Result 2. There exists an MPC algorithm that for any constant ε > 0, with high probability,
gives a (1+ε)-approximation to maximum matching and O(1)-approximation to minimum vertex
cover in O(log log n) MPC rounds using only O(n/polylog(n)) memory per machine.

Given an existing black-box reduction [57] (see also [29]), our Result 2 immediately implies a
(2+ε)-approximation algorithm for maximum weighted matching in the same O(log log(n)) rounds,
though with the memory per machine increased to O(n log(n)).

Prior to [29], all MPC algorithms for matching and vertex cover [4, 5, 56] required Ω
(

logn
log logn

)
rounds to achieve O(1) approximation when the memory per machine was restricted to Õ(n)
(which is arguably the most natural choice of parameter, similar-in-spirit to the semi-streaming
restriction [38, 59]). In a very recent breakthrough, Czumaj et al. [29] presented an (almost)
2-approximation algorithm for maximum matching that requires O(n) (even n/(log n)O(log logn))
memory per machine and only O

(
(log log n)2

)
MPC rounds. Result 2 improves upon this result

on several fronts: (i) we improve the round complexity of the matching algorithm to O(log log n),
resolving a conjecture of [29] in the affirmative, (ii) we obtain an O(1) approximation to vertex
cover, answering another open question of [29], and (iii) we achieve all these using a considerably
simpler algorithm and analysis than [29].

Comparison to results published after the appearance of our paper. After an earlier
version of our paper was shared on arXiv [11], Ghaffari et al. [40] presented a result very similar to
our Result 2: their bounds are exactly the same for matching, while for vertex cover they achieve
a better approximation in the same asymptotic number of rounds: (2 + ε)-approximation vs. our
O(1) approximation. Techniques-wise, our approaches are entirely different: the algorithms in [40]
are based on an earlier round-compression technique of [29], and require an intricate local algorithm
and analysis to ensure consistency between machines; see Section 1.4 below for more details.

Note that only our Result 2 is shared with the later paper of Ghaffari et al. [40]: Result 1
appears only in our paper, and is entirely specific to the particular techniques that we use.

1.4 Our Techniques
Both of our results are based on a novel application of edge degree constrained subgraphs (EDCS)
that were previously introduced by Bernstein and Stein [21] for maintaining large matchings in
dynamic graphs. Previous work on EDCS [21, 22] focused on how large a matching an EDCS

4



contains and how it can be maintained efficiently in a dynamic graph. For the two results of this
paper, we instead focus on the structural properties of the EDCS, and prove several new facts in
this regard.

For result 1, we identify the EDCS as a sparse certificate for large matchings and small vertex
covers which are quite robust to sampling and composition: an ideal combination for a randomized
coreset. For Result 2, we use the following recursive procedure, which crucially relies upon on the
robustness properties of the EDCS proved in Result 1: we repeatedly compute an EDCS of the
underlying graph in a distributed fashion, redistribute it again amongst multiple machines, and
recursively solve the problem on this EDCS to compute an O(1)-approximation to matching and
vertex cover. We therefore limit the memory on each machine to only O(n) (even O(n/polylog(n)))
at the cost of increasing the number of rounds from O(1) to O(log log n). Additional ideas are needed
to ensure that the approximation ratio of the algorithm does not increase beyond a fixed constant
as a result of repeatedly computing an EDCS of the current graph in O(log log n) iterations.

Comparison of techniques. Result 1 uses the definition of EDCS from [21,22] but uses it in an
entirely different setting, and hence we prove and use novel properties of EDCS in this work.

Result 2 relies on the high-level technique of vertex sampling from Czumaj et al. [29]: instead
of partitioning the edges of the graph, each machine receives a random sample of the vertices, and
works on the resulting induced subgraph. Other than this starting point, our approach proceeds
along entirely different lines from [29], in terms of both the local algorithm computed on each
subgraph and in the analysis. The main approach in [29] is round compression, which corresponds
to compressing multiple rounds of a particular distributed algorithm into smaller number of MPC
rounds by maintaining a consistent state across the local algorithms computed on each subgraph
(using a highly non-trivial local algorithm and analysis). Our results, on the other hand, do not
correspond to a round compression approach at all and we do not require any consistency in the local
algorithm on each machine. Instead, we rely on structural properties of the EDCS that we prove
in this paper, independent of the algorithms that compute these subgraphs. This allows us to bypass
many of the technical difficulties arising in maintaining a consistent state across different machines
which in turn results in improved bounds and a considerably simpler algorithm and analysis.

Organization. We present our notation and definitions of EDCS and the MPC model in Section 2.
We then prove our structural results on EDCS in Section 3. Section 4 briefly describes how to prove
Result 1 using these results. Finally, Section 5 contains the proof sketch of Result 2. A full version
of the paper containing omitted proofs and details appears at the end of the paper. In particular,
we entirely postpone our new analysis of the randomized coreset of [12] as well as a lower bound on
its performance to Section 8 of the full version but refer the reader to this result as a warm-up to
our main results. Further related work are discussed in Section 6.5 of the full version.

2 Preliminaries
Notation. For a graph G(V,E), we use MM(G) to denote the maximum matching size in G and
VC(G) to denote the minimum vertex cover size. For any vertex v ∈ V , dG(v) denotes the degree
of v in the graph G.

Sampled Subgraphs. We use two different ways of sampling a graph G(V,E). For p ∈ (0, 1),

• A graph GE
p (V,Ep) is an edge sampled subgraph of G iff the vertex set of GE

p and G are the
same and every edge in E is picked independently and with probability p in Ep.

• A graph GV
p (Vp, Ep) is a vertex sampled (induced) subgraph of G iff every vertex in V is sampled

in Vp independently and with probability p and GV
p is the induced subgraph of G on Vp
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The Massively Parallel Computation (MPC) Model. We adopt the most stringent model
of modern parallel computation among [10,19,42,53], the so-called Massively Parallel Computation
(MPC) model of [19]. Let G(V,E) with n := |V | and m := |E| be the input graph. In this model,
there are p machines, each with a memory of size s. One typically requires that both p, s = m1−Ω(1)

i.e., polynomially smaller than the input size [10,53]. Computation proceeds in synchronous rounds:
in each round, each machine performs some local computation and at the end of the round machines
exchange messages. All messages sent and received by each machine in each round have to fit into
the local memory of the machine. This in particular means that the length of the messages on each
machine is bounded by s in each round. At the end, the machines collectively output the solution.

Edge Degree Constrained Subgraph (EDCS). We introduce edge degree constrained sub-
graphs (EDCS) in this section and present several of their properties which are proven in previous
work. We emphasize that all other properties of EDCS proven in the subsequent sections are new to
this paper. An EDCS is defined formally as follows.

Definition 2 ([21]). For any graph G(V,E) and integers β ≥ β− ≥ 0, an edge degree constraint
subgraph (EDCS) (G, β, β−) is a subgraph H := (V,EH) of G with the following two properties:

(P1) For any edge (u, v) ∈ EH : dH(u) + dH(v) ≤ β.
(P2) For any edge (u, v) ∈ E \ EH : dH(u) + dH(v) ≥ β−.

In the remainder of the paper, we use the terms “Property (P1)” and “Property (P2)” of EDCS
to refer to the first and second items in Definition 2 above.

Previous work in [21, 22] has shown that for any choice of β− < β, an EDCS(G, β, β−) always
exists (see Lemma 7.4 in the full version). Moreover, it was shown in [21] (bipartite graphs) and [22]
(general graphs) that an EDCS accurately preserves the maximum matching in G. It is easy to
show a qualitatively similar result for vertex cover. We summarize these results in the lemma below
(see Lemmas 7.5 and 7.6 in the full version for a more thorough discussion).

Lemma 2.1 ([21,22]). Consider any parameters ε > 0, β = Ω(ε−3) and β− = (1−Θ(ε)) · β. If H
is an EDCS(G, β, β−) of G then: (1) MM(G) ≤ (3/2+ε) ·MM(H) and (2) given only the graph H,
one can recover a (2 + ε)-approximation to VC(G) without further access to the original graph G.

Proof Sketch. The proof that MM(G) ≤ (3/2 + ε) ·MM(H) is presented in [21, 22] and requires a
fairly complicated argument. The proof for vertex cover however is simpler. The basic idea is that
we start with VC(H) to cover the edges of H, and then by Property (P2) of EDCS H we can cover
edges in G \H by adding to the vertex cover all vertices v with dH(v) ≥ β−/2.

3 New Properties of Edge Degree Constrained Subgraphs
We study further properties of EDCS in this section. Although EDCS was used prior to our work,
all the properties proven in this section are entirely new to this paper and look at the EDCS from
a different vantage point. Previous work in [21, 22] studied the EDCS from the perspective of how
large of matching it contains and how it can be maintained efficiently in a dynamic graph. In this
section, we prove several new structural properties of the EDCS itself. In particular, while it easy
to see that in terms of edge-sets there can be many different EDCSes of some fixed graph G(V,E)
(consider G being a complete graph), we show that an EDCS is still “semi-unique” in that the degree
distributions of every EDCS (for the same β and β−) are almost the same. In other words, the
degree of any vertex v is almost the same in every EDCS of G. This is in sharp contrast with similar
objects such as maximum matchings or b-matchings, which can vary a lot within the same graph.

We now formally state the semi-uniqueness property (Lemma 3.1), which is used it to show that
the EDCS is extremely robust under sampling and composition (Lemmas 3.2 and 3.3).
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Lemma 3.1 (Degree Distribution Lemma). Fix a graph G(V,E) and parameters β, β− =
(1 − λ) · β (for λ < 1/100). For any two subgraphs A and B that are EDCS(G, β, β−), and any
vertex v ∈ V , |dA(v)− dB(v)| = O(log n) · λ1/2 · β.

Proof Sketch. We start with a set S1 of vertices that have the most difference in degree between
A and B. For simplicity, assume vertex degrees are all larger by an additive factor of ∆ in A
compared to B. We look at all neighbors of S1 in A\B, denoted by T1, and then all neighbors of T1

in B \ A plus the original set S1 which we denote by S2. We then use the two properties of EDCS
in Definition 2 to prove that the vertices in S2 still have a larger degree in A compared to B by an
additive factor which is only slightly smaller than ∆, while the size of S2 is a constant factor larger
than S1. The main observation behind this claim is that since vertices in S have a “large” degree in
A, their neighbors in A \B in T1 should have a “small” degree to satisfy Property (P1) of EDCS A.
Similarly, since vertices in S1 have a “small” degree in B, and since the edges in A \ B are missing
from the EDCS B, by Property (P2) of EDCS B the vertices in T1 should have a “large” degree in
B. Applying this idea one more time to vertices in T1 in order to obtain the set S2, we can see that
vertices in S2 have a “large” degree in A and a “small” degree in B, and that the decrease in the
original gap ∆ between the degree of vertices in A vs B is only O(β − β−) = O(λ · β).

We use this argument repeatedly to construct the next set S3 and so on. With each iteration
the new set Si is larger than the previous one Si−1 by a constant multiplicative factor, while the
A-vs.-B degree gap only decreases by a small additive factor from Si−1 to Si. Now on one hand
we can keep iterating this process as long as the A-vs.-B degree gap remains ≥ ∆/2. On the other
hand, a multiplicative increase in set size can only happen for O(log(n)) steps before we run out of
vertices. Thus, the gap must decrease from ∆ to ∆/2 after only O(log(n)) steps of a small additive
decrease, which gives us an upper bound on the original gap ∆.

The formal proof is rather technical and is presented in Section 9.1 of the full version.

EDCS in Sampled Subgraphs. We use the Degree Distribution Lemma to prove two lemmas
regarding EDCS in sampled subgraphs. The first concerns edge sampled subgraphs. We show that
the degree distributions of any two EDCS for two different edge sampled subgraphs of G is almost
the same no matter how the two EDCS are selected or even if the choice of the two subgraphs are
not independent. This Lemma is is used in our Result 1 on randomized coresets (see Section 4).

Lemma 3.2 (EDCS in Edge Sampled Subgraphs). Fix any graph G(V,E) and p ∈ (0, 1). Let G1 and
G2 be two edge sampled subgraphs of G with probability p (chosen not necessarily independently).
Let H1 and H2 be arbitrary EDCSs of G1 and G2 with parameters (β, (1− λ) · β). Suppose β ≥
750 · λ−2 · ln (n), then, with probability 1− 4/n9, simultaneously for all v ∈ V :

|dH1(v)− dH2(v)| ≤ O(log n) · λ1/2 · β.

We also prove a qualitatively similar lemma for vertex sampled subgraphs. This is needed in
Result 2 for parallel algorithms (see Section 5). The main difference from edge sampling is that
there will be a huge gap between the degree of a vertex between the two EDCS if it is sampled in
one subgraph but not the other. However, we show that the degree of vertices that are sampled in
both subgraphs are still almost the same.

Lemma 3.3 (EDCS in Vertex Sampled Subgraphs). Fix any graph G(V,E) and p ∈ (0, 1). Let
G1 and G2 be two vertex sampled subgraphs of G with probability p (chosen not necessarily inde-
pendently). Let H1 and H2 be arbitrary EDCSs of G1 and G2 with parameters (β, (1− λ)β). If
β ≥ 750 · λ−2 · ln (n), then, with probability 1− 4/n9, simultaneously for all v ∈ G1 ∩G2:

|dH1(v)− dH2(v)| ≤ O(log n) · λ1/2 · β.
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The proofs of both these lemmas proceed along the following lines. We start with any EDCS
H of the original graph G with parameters (almost) (β/p, β−/p). We then consider the set of
edges from H in each of the sampled subgraphs G1 and G2, i.e., the two subgraphs H ′1 := G1 ∩H
and H ′2 := G2 ∩ H. We use the randomness in the process of sampling subgraphs G1 and G2 to
prove that, with high probability, H ′1 and H ′2 are both an EDCS of G1 and G2, respectively, with
parameters (β, β−). Moreover, since they are sampled from the same underlying EDCS H, H ′1 and
H ′2 end up having similar degree distributions (denoted by H ′1 ∼ H ′2). Finally, we use our degree
distribution lemma (Lemma 3.1) to argue that for any arbitrary EDCS H1 of G1 and H2 of G2,
degree distribution of H1 (resp. H2) is close to H ′1 (resp. H ′2), namely H1 ∼ H ′1 and H2 ∼ H ′2. We
thus have H1 ∼ H ′1 ∼ H ′2 ∼ H2, completing the proof. The formal proofs of these two lemmas are
deferred to Section 9 of the full version.

4 Randomized Coresets for Matching and Vertex Cover
In this short section, we introduce our randomized coresets for matching and vertex cover and sketch
the proof of Result 1. We show that one can compute an EDCS of the input graph G by simply
taking the union of the EDCSes computed on each subgraph in the random k-partition. We then
invoke Lemma 2.1 to obtain a large matching and a small vertex cover of G from this EDCS.

Let G be any arbitrary graph and G(1), . . . , G(k) be a random k-partition of G. Our randomized
coreset for both matching and vertex cover is simply any arbitrarily chosen EDCS of each G(i) with
parameters β = polylog(n) and β− =

(
1−Θ((ε/ log n)2)

)
· β. Since the maximum degree of any

EDCS is at most β by Property (P1) of EDCS, size of this coreset is only O(n · β) = Õ(n). It thus
only remains to prove the correctness of this coreset.

Let H(i) be the EDCS computed on each graph G(i). The first part of the proof shows that
H :=

⋃k
i=1H

(i) is an EDCS for the original graph G with parameters (roughly) equal to (k ·β, k ·β−)
with high probability. This is intuitively true because by Lemma 3.2, the degree of every vertex v
across all subgraphs H(i) is essentially the same, so for any i ∈ [k], we have dH(v) ≈ k · dH(i)(v).
As a result, for any edge (u, v) in H(i) (for any i ∈ [k]), Property (P1) of EDCS H(i) ensures that
dH(u) + dH(v) ≈ k · (dH(i)(u) + dH(i)(v)) . k · β, so (u, v) satisfies Property (P1) of H as well.
Similarly, every (u, v) ∈ G \H must be in G(i) \H(i) for some i ∈ [k], so by Property (P2) of EDCS
H(i) we have dH(u) + dH(v) ≈ k · (dH(i)(u) + dH(i)(v)) & k · β−. So (u, v) satisfies Property (P2) of
EDCS H as well. See Lemma 10.1 in the full version for the formal proof.

We can now easily conclude the proof of Result 1: since H :=
⋃k
i=1H

(i) is an EDCS of the
original graph G with high probability, Lemma 2.1 guarantees that we can recover an (almost)
(3/2)-approximate matching and an (almost) (2 + ε)-approximate vertex cover for G using only H.
see Theorems 9 and 10 in Section 10.2 of the full version for formal proofs

5 MPC Algorithms for Matching and Vertex Cover
In this section, we show that a careful adaptation of our coresets construction together with the
structural results proven for EDCS in Section 3 can be used to obtain MPC algorithms with much
smaller memory while increasing the number of required rounds to only O(log log n).

Theorem 4. There exists an MPC algorithm that given a graph G(V,E) with high probability
computes an O(1) approximation to both maximum matching and minimum vertex cover of G in
O(log log n+ log

(
n
s

)
) MPC rounds on machines of memory s = nΩ(1).

By setting s = O(n/polylog(n)) in Theorem 4, we achieve an O(1)-approximation algorithm to
both matching and vertex cover inO(log log n) MPC rounds on machines of memoryO(n/polylog(n)),
formalizing Result 4 (reducing the approximation ratio to (1+ε) for matching can be done by adapt-
ing the reduction of [58] from streaming to MPC model; see Section 11.6.2 in full version for details).
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In the following, for the sake of clarity, we focus on sketching the proof of Theorem 4 for the
natural case when memory per machine is s = Õ(n). (See Section 11.5 of full version for the
additional (standard) ideas needed to reduce the memory to any s = nΩ(1) at a cost of increasing
the number of the rounds by an additive O(log

(
n
s

)
) factor); The overall idea of the algorithm in

this result is as follows. Instead of the edge sampled subgraphs used by our randomized coresets, we
start by picking k = O(n) vertex sampled subgraphs of G with sampling probability roughly 1/

√
n

and send each to a separate machine. Each machine then locally computes an EDCS of its input
(with parameters β = polylog(n) and β− ≈ β) with no coordination across the machines. Unlike
the MPC algorithm obtained by our randomized coreset approach (Corollary 2), where the memory
per machine was as large as Θ(n

√
n), here we cannot collect all these smaller EDCSes on a single

machine of memory Õ(n). Instead, we repartition them across the machines again (and discard
remaining edges) and repeat the previous process on this new graph. The main observation is that
after each step, the maximum degree of the remaining graph (i.e., the union of all EDCSes) would
drop quadratically (e.g., from Ω(n) to Õ(

√
n) in the first step). As such, in each subsequent step,

we can pick a smaller number of vertex sampled subgraphs, each with a higher sampling probability
than previous step, and still each graph fits into the memory of a single machine. Repeating this
process for O(log log n) steps reduces the maximum degree of the remaining graph to polylog(n).
At this point, we can store the final EDCS on a single machine and solve the problem locally.

Unfortunately this approach on its own would only yield a (3/2)O(log logn) = polylog(n) approxi-
mation to matching, since by Lemma 2.1 each recursion onto an EDCS of the graph could introduce
a 3/2-approximation. A similar problem exists for vertex cover. In the proof of Lemma 2.1, com-
puting a vertex cover of G from its EDCS H involves two steps: we add to the vertex cover all
vertices with high degree in H to cover the edges in G\H, and then we separately compute a vertex
cover for the edges in H. Since H cannot fit into a single machine, the second computation is done
recursively: in each round, we find an EDCS of the current graph (which is partitioned amongst
many machines), add to the vertex cover all high degree vertices in this EDCS, and then recurse onto
the sparser EDCS. A straightforward analysis would only lead to an O(log log n) approximation.

We improve the approximation factor for both vertex cover and matching by showing that they
can serve as witnesses to each other. Whenever we add high-degree vertices to the vertex cover, we
will also find a large matching incident to these vertices; this can be done in O(1) parallel rounds.
We then argue that their sizes are always within a constant factor of each other, which is well known
to imply that both are a constant approximation for the respective problem (see Proposition 7.2).

The rest of this section is organized as follows. We first describe the subroutines for computing
an EDCS from vertex sampled subgraphs and for obtaining a large matching incident on high degree
vertices. We then combine these subroutines to provide our main parallel algorithm. The MPC
implementation details of our algorithm as well as extension of the maximum matching algorithm
to (2 + ε) and (1 + ε)-approximation is deferred to Section 11.4 and Section 11.6 of the full version.

Main Subroutines. In the following two subroutines, both the input graph and the output edges
are distributed across multiple machines. The formal description of these subroutines and the proofs
of their correctness are presented in Section 11.1 and Section 11.2 of the full version.

ParallelEDCS(G,∆). A parallel algorithm for computing an EDCS of a given graph G with max-
imum degree ∆ on machines of memory Õ(n). With high probability, the computed EDCS has
parameters β = O(

√
∆) · polylog(n) and β− ≥ 0.99 · β and is edge-partitioned across multiple

machines.
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RandomMatch(G,S,∆). Let G be a graph with maximum degree ∆ and let S be a set of vertices
with degree at least ∆/3 in G. RandomMatch(G,S,∆) is a parallel algorithm running on machines
of memory nΩ(1) that finds a matching M such that every edge in M is incident to S, and
E |M | = Θ(|S|). (The existence of such a large matching in G follows from basic facts in graph
theory; see Proposition 7.3.)

We briefly describe the main ideas behind each of these subroutines. ParallelEDCS(G,∆) works
by creating O(∆) vertex sampled subgraphs of G with sampling probability roughly 1/

√
∆, each

on a separate machine. It is easy to see that the total number of edges in each such subgraph is at
most Õ(n) with high probability and hence this graph fits the memory of a single machine. Each
machine then computes an EDCS of its input with parameters β = polylog(n) and β− ≈ β. Similar
to Section 4, we can prove that the union of these edges is an EDCS of the original graph with the
aforementioned parameters (this time using Lemma 3.3 for vertex sampled subgraphs).

RandomMatch(G,S,∆) is based on a simple randomized procedure. The machines collectively
sample each edge incident to S in G with probability 1/∆ independently, and then add all edges
with unique endpoints in this process to the final matching M (these edges can be found in parallel
using a parallel sort subroutine). Since degree of vertices in G is at most ∆, while degree of vertices
in S is at least ∆/3, one can show that the expected size of the matching returned is Ω(|S|).
Parallel Algorithm for Matching and Vertex Cover. We now present our main algorithm.

ParallelAlgorithm(G,∆). A parallel algorithm for computing a vertex cover Valg and a matching
Malg of a given graph G with maximum degree at most ∆.

1. If ∆ ≤
(
400 · log12 n

)
send G to a single machine; compute a maximal matching Malg in G

and let Valg be the set of vertices matched by Malg. Return Valg and Malg. Otherwise,
continue the following algorithm.

2. Compute an EDCS C := ParallelEDCS(G,∆) in parallel. Let βC = O(
√

∆) ·polylog(n), and
β−C = 0.99 · βC be the parameters of this EDCS.

3. Define Vhigh :=
{
v ∈ V | dC(v) ≥ β−C/2

}
be the set of “high” degree vertices in C.

4. Compute a matching Mhigh := RandomMatch(C, Vhigh, βC).

5. Define V − := V \
(
Vhigh ∪ V (Mhigh)

)
as the set of vertices that are neither high degree in

C nor matched by Mhigh. Let C− be the induced subgraph of C on vertices V −.

6. Recursively compute (Vrec,Mrec) := ParallelAlgorithm(C−, βC).

7. Return Valg := Vhigh ∪ V (Mhigh) ∪ Vrec and Malg := Mhigh ∪Mrec.

The total number of recursive calls made by ParallelAlgorithm(G,∆) is O(log log ∆) as the max-
imum degree of the underlying graph drops from ∆ to Õ(

√
∆) after each call (see Claim 11.8 in the

full version). The detailed proof of the following lemma appears in Section 11.3 of the full version.

Lemma 5.1. For any graph G(V,E), ParallelAlgorithm(G,n), with constant probability, outputs a
matching Malg which is an O(1)-approximation to the maximum matching of G and a vertex cover
Valg which is an O(1)-approximation to the minimum vertex cover of G.

Proof Sketch. In the following, we assume that all the calls made to ParallelEDCS and RandomMatch
in ParallelAlgorithm return a correct answer which happens with high probability by a union bound.
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We first argue that Valg and Malg are respectively a feasible vertex cover and a feasible matching
of G with high probability. The case for Malg is straightforward; the set of vertices matched by
Mhigh is disjoint from the vertices in Mrec as all vertices matched by Mhigh are removed in C−,
and hence (by induction) Malg = Mhigh ∪Mrec is a valid matching in G. Now consider the set of
vertices Valg. Since C is an EDCS(G, βC , β

−
C ), by Property (P2) of EDCS C, any edge e ∈ G \ C

has at least one neighbor in Vhigh and is thus covered by Vhigh. Additionally, as we pick V (Mhigh)
in the vertex cover, any edge incident on these vertices is also covered. Thus Vhigh ∪ V (Mhigh)
covers all edges in G \ C−, and (by induction) Vrec covers all the edges in C−

We now show that the sizes of Malg and Valg are within a constant factor of each other in
expectation, which is well known to imply that both are an O(1)-approximation to their respective
problem (see Proposition 7.2). By correctness of RandomMatch, Vhigh and Mhigh are within a
constant factor of each other in expectation. Moreover, clearly |V (Mhigh)| ≤ 2 |Vhigh|, so the vertex
cover Vhigh ∪V (Mhigh) and the matching Mhigh chosen at each step are within a constant factor of
each other. By induction, the final outputs Valg and Malg are also within a constant factor of each
other in expectation. This, together with a simple application of Markov bound ensures that with
probability Ω(1), Valg and Malg are an O(1)-approximation to their respective problem.

We note that in Lemma 5.1, we only achieved a constant factor probability of success for
ParallelAlgorithm. We can however run this algorithm in parallel O(log n) times and pick the best
solution to achieve a high probability of success while still having Õ(n) memory per machine and
O(log log n) rounds. In Sections 11.4.1 and 11.5 of full version, we further discuss optimizing the
number of machines and the per-machine memory of this algorithm, respectively.
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FULL VERSION OF THE PAPER

6 Introduction
As massive graphs become more prevalent, there is a rapidly growing need for scalable algorithms
that solve classical graph problems on large datasets. When dealing with massive data, the entire
input graph is orders of magnitude larger than the amount of storage on one processor and hence any
algorithm needs to explicitly address this issue. For massive inputs, several different computational
models have been introduced, each focusing on certain additional resources needed to solve large-
scale problems. Some examples include the streaming model, the distributed communication model,
and the massively parallel computation (MPC) model that is a common abstraction of MapReduce-
style computation (see Section 7 for a definition of MPC). The target resources in these models are
the number of rounds of communication and the local storage on each machine.

Given the variety of relevant models, there has been a lot of attention on designing general
algorithmic techniques that can be applicable across a wide range of settings. We focus on this task
for two prominent graph optimization problems: maximum matching and minimum vertex cover.
Our main result (Section 6.2) presents a single unified algorithm that immediately implies sig-
nificantly improved results (in some or all of the parameters involved) for both problems in all three
models discussed above. For example, in random arrival order streams, our algorithm computes an
(almost) 3/2-approximate matching in a single pass with Õ(n1.5) space; this significantly improves
upon the approximation ratio of previous single-pass algorithms using subquadratic space, and is
the first result to present strong evidence of a separation between random and adversarial order for
matching. Another example is in the MPC model: Given Õ(n1.5) space per machine, our algorithm
computes an (almost) 3/2-approximate matching in only 2 MPC rounds; this significantly improves
upon all previous results with a small constant number of rounds.

Our algorithm is built on the framework of randomized composable coreset, which was recently
suggested by Assadi and Khanna [12] as a means to unify different models for processing massive
graphs (see Section 6.1). A common drawback of unified approaches is that although they have
the advantage of versatility, the results they yield are often not as strong as those that are tailored
to one particular model. It is therefore perhaps surprising that we can design essentially a single
algorithm that improves upon the state-of-the-art algorithms in all three models discussed above
simultaneously. Our approach for the matching problem notably goes significantly beyond a 2-
approximation, which is a notorious barrier for matching in all the models discussed above.

We also build on our techniques to achieve a second result (Section 6.3) particular to the
MPC model. We show that when each machine has only O(n) space (or even O(n/polylog(n))),
O(log log n) rounds suffice to compute a (1 + ε)-approximate matching or a O(1)-approximate ver-
tex cover. This improves significantly upon the recent breakthrough of Czumaj et al. [29], which
does not extend to vertex cover, and requires O(log log2(n)) rounds. Our results in this part settle
multiple open questions posed by Czumaj et al. [29].

6.1 Randomized Composable Coresets
Two examples of general techniques widely used for processing massive data sets are linear sketches
(see e.g. [5,6,14,23,25,26,51,52,60]) and composable coresets (see e.g. [12,15,16,18,48,62,63]). Both
proceed by arbitrarily partitioning the data into smaller pieces, computing a small-size summary
of each piece, and then showing that these summaries can be combined into a small-size summary
of the original data set. This approach has a wide range of applications, but strong impossibility
results are known for both techniques for the two problems of maximum matching and minimum
vertex cover that we study in this paper [14].
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Recently, Assadi and Khanna [12] turned to the notion of randomized composable coresets—
originally introduced in the context of submodular maximization by Mirrokni and Zadimoghadam [62]
(see also [30])—to bypass these strong impossibility results. The idea is to partition the graph into
random pieces rather than arbitrary ones. The authors in [12] designed randomized composable
coresets for matching and vertex cover, but although this led to unified algorithms for many models
of computation, the resulting bounds were still for the most part weaker than the state-of-the-art
algorithms tailored to each particular model.

We now define randomized composable coresets in more detail; for brevity, we refer to them
as randomized coresets. Given a graph G(V,E), with m = |E| and n = |V |, consider a random
partition of E into k edge sets

{
E(1), . . . , E(k)

}
; each edge in E is sent to exactly one of the E(i),

picked uniformly at random, thereby partitioning graph G into k subgraphs G(i)(V,E(i)).

Definition 3 (Randomized Composable Coreset [12, 62]). Consider an algorithm ALG that takes
as input an arbitrary graph and returns a subgraph ALG(G) ⊆ G. ALG is said to output an α-
approximate randomized coreset for maximum matching if given any graph G(V,E) and a random k-
partition of G into G(i)(V,E(i)), the size of the maximum matching in ALG(G(1))∪ . . .∪ALG(G(k))
is an α-approximation to the size of the maximum matching in G. We refer to the number of
edges in the returned subgraph by ALG as the size of the coreset. Randomized coresets are defined
analogously for minimum vertex cover and other graph problems.

It is proven in [12] that any O(1)-approximate randomized coreset for matching or vertex cover
has size Ω(n). Thus, similarly to [12], we focus on designing randomized coresets of size Õ(n), which
is optimal within logarithmic factors. The following proposition states some immediate applications
of randomized coresets.

Proposition 6.1. Suppose ALG outputs an α-approximate randomized coreset of size Õ(n) for
problem P (e.g. matching). Let G(V,E) be a graph with m = |E| edges. This yields:

1. A parallel algorithm in the MPC model that with high probability outputs an α-approximation
to P in two rounds with Õ(

√
m/n) machines, each with Õ(

√
mn+ n) = Õ(n1.5) memory.

2. A streaming algorithm that on random arrival streams outputs an α-approximation to P (G)
with high probability using Õ(

√
mn+ n) = Õ(n1.5) space.

3. A simultaneous communication protocol that on randomly partitioned inputs computes an α-
approximation to P (G) with high probability using Õ(n) communication per machine/player.

A proof of Proposition 6.1 can be found in Appendix A.

6.2 First Result: Improved Algorithms via a New Randomized Coreset
We start by studying the previous randomized coreset of [12] for matching, which was simply to
pick a maximum matching of each machine’s subgraph as its coreset. This is arguably the most
natural approach to the problem and results in truly sparse subgraphs (maximum degree one). As a
warm-up to our main results, we present a simpler and improved analysis (compared to that in [12]),
which shows that this coreset achieves a 3-approximation (vs. 9-approximation proven in [12]). We
also show that there exist graphs on which the approximation ratio of this coreset is at least 2. This
suggests that to achieve a better than 2 approximation, fundamentally different ideas are needed
which brings us to our first main result.

Result 3. There exist randomized composable coresets of size Õ(n) that for any constant ε > 0,
give a (3/2 + ε)-approximation for maximum matching and (2 + ε)-approximation for minimum
vertex cover with high probability.
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Our results improve upon the randomized coresets of [12] that obtained O(1) and O(log n) ap-
proximation to matching and vertex cover, respectively. We notably go beyond the ubiquitous
2-approximation barrier for matching (in Section 8.3, we show that the previous approach of [12]
provably cannot go below 2). Result 3 yields a unified framework that improves upon the state-of-
the art algorithms for matching and vertex cover across several computational models in one or all
parameters involved.

First implication: streaming. We consider single-pass streaming algorithms. Computing a 2-
approximation for matching (and vertex cover) in O(n) space is trivial: simply maintain a maximal
matching. Going beyond this barrier has remained one of the central open questions in the graph
streaming literature since the introduction of the field [38]. No o(n2)-space algorithm is known
for this task on adversarially ordered streams and the lower bound result by Kapralov [49] (see
also [41]) proves that an

(
e
e−1

)
-approximation requires n1+Ω(1/ log logn) space. To make progress on

this fascinating open question, Konrad et al. [55] suggested the study of matching in random arrival
streams. They presented an algorithm with approximation ratio strictly better than 2, namely 2−δ
for δ ≈ 0.002, in O(n) space over random streams. A direction application of our Result 3 improves
the approximation ratio of this algorithm significantly albeit at a cost of a larger space requirement.

Corollary 5. There exists a single-pass streaming algorithm on random arrival streams that uses
Õ(n1.5) space and with high probability (over the randomness of the stream) achieves an (almost)
(3/2)-approximation to the maximum matching problem.

Our results provide the first strong evidence of a separation between random-order and adversarial-
order streams for matching, as it is the first algorithm that beats the ratio of

(
e
e−1

)
, which is known

to be “hard” on adversarial streams [49]. Although the lower bound of [49] does not preclude
achieving the bounds of Corollary 5 in an adversarial order (because our space is Õ(n1.5) rather
than Õ(n)), the proof in [49] (see also [41]) suggests that achieving such bounds is ultimately con-
nected to further understanding of Ruzsa-Szemerédi graphs, a notoriously hard problem in additive
combinatorics (see e.g. [8,39,43]). From a different perspective, most (but not all) streaming lower
bounds are proven by bounding the (per-player) communication complexity of the problem in the
blackboard communication model, including the

(
e
e−1

)
lower bound of [49]. Our algorithm in Re-

sult 3 can be implemented with Õ(n) (per-player) communication in this model which goes strictly
below the lower bound of [49], thus establishing the first provable separation between adversarial-
and random-partitioned inputs in the blackboard communication model for computing a matching.

Second implication: MPC. Maximum matching and minimum vertex cover are among the
most studied graph optimization problems in the MPC and other MapReduce-style computation
models [4, 5, 12, 20, 29, 45, 56]. As an application of Result 3, we obtain efficient MPC algorithms
for matching and vertex cover in only two rounds of computation.

Corollary 6. There exist MPC algorithms that with high probability achieve an (almost) (3/2)-
approximation to matching and an (almost) 2-approximation to vertex cover in two MPC rounds
and Õ(

√
mn+ n) memory per machine2.

It follows from the results of [14] that sub-quadratic memory is not possible with one MPC round,
so two rounds is optimal. Furthermore, our implementation only requires one round if the input is
distributed randomly in the first place; see [62] for details on when this assumption applies.

2The approximation factor for vertex cover degrades to 4 if one requires local computation on each machine to be
polynomial time; see Remarks A.1 and 10.2.
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Our algorithms outperform the previous algorithms of [12] for matching and vertex cover in terms
of approximation ratio (3/2 vs. O(1) and 2 vs. O(log n)), while memory and round complexity are
the same. Our matching algorithm outperforms the 2-approximate maximum matching algorithm
of Lattanzi et al. [56] in terms of both the approximation ratio (3/2 vs. 2) and round complexity
(2 vs. 6) within the same memory. Our result for the matching problem is particularly interesting
as all other MPC algorithms [4, 5, 20] that can achieve a better than two approximation (which is
also a natural barrier for matching algorithms across different models) require a large (unspecified)
constant number of rounds. Achieving the optimal 2 rounds is significant in this context, since
the round complexity of MPC algorithms determines the dominant cost of the computation (see,
e.g. [19, 56]), and hence minimizing the number of rounds is the primary goal in this model.

Third implication: distributed simultaneous communication. Maximummatching (and to
a lesser degree vertex cover) has been studied previously in the simultaneous communication model
owing to many applications of this model, including in achieving round-optimal distributed algo-
rithms [12], proving lower bounds for dynamic graph streams [7, 13, 14, 54], and applications to
mechanism design [9, 32,33]. As an application of Result 3, we obtain the following corollary.

Corollary 7. There exist simultaneous communication protocols on randomly partitioned inputs
that achieve (almost) (3/2)-approximation to matching and (almost) 2-approximation to vertex cover
with high probability (over the randomness of the input partitioning) with only Õ(n) communication
per machine/player.

This result improves upon the O(1) and O(log n) approximation of [12] (on randomly partitioned
inputs) for matching and vertex cover that were also designed by using randomized coresets. Our
protocols achieve optimal communication complexity (up to polylog(n) factors) [12].

6.3 Second Result: MPC with Low Space Per Machine
Our second result concerns the MPCmodel with per-machine memoryO(n) or evenO(n/polylog(n)).
This is achieved by extending our Result 1 from random edge-partitioned subgraphs (as in random-
ized coresets) to random vertex-partitioned subgraphs (which we explain further below).

Result 4. There exists an MPC algorithm that for any constant ε > 0, with high probability,
gives a (1+ε)-approximation to maximum matching and O(1)-approximation to minimum vertex
cover in O(log log n) MPC rounds using only O(n/polylog(n)) memory per machine.

Given an existing black-box reduction [57] (see also [29]), our Result 4 immediately implies a
(2+ε)-approximation algorithm for maximum weighted matching in the same O(log log(n)) rounds,
though with the memory per machine increased to O(n log(n)).

Prior to [29], all MPC algorithms for matching and vertex cover [4, 5, 56] required Ω
(

logn
log logn

)
rounds to achieve O(1) approximation when the memory per machine was restricted to Õ(n)
(which is arguably the most natural choice of parameter, similar-in-spirit to the semi-streaming
restriction [38, 59]). In a very recent breakthrough, Czumaj et al. [29] presented an (almost)
2-approximation algorithm for maximum matching that requires O(n) (even n/(log n)O(log logn))
memory per machine and only O

(
(log log n)2

)
MPC rounds. Result 4 improves upon this result

on several fronts: (i) we improve the round complexity of the matching algorithm to O(log log n),
resolving a conjecture of [29] in the affirmative, (ii) we obtain an O(1) approximation to vertex
cover, answering another open question of [29], and (iii) we achieve all these using a considerably
simpler algorithm and analysis than [29].

Comparison to results published after the appearance of our paper. After an earlier
version of our paper was shared on arXiv [11], Ghaffari et al. [40] presented a result very similar to
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our Result 2: their bounds are exactly the same for matching, while for vertex cover they achieve
a better approximation in the same asymptotic number of rounds: (2 + ε)-approximation vs. our
O(1) approximation. Techniques-wise, our approaches are entirely different: the algorithms in [40]
are based on an earlier round-compression technique of [29], and require an intricate local algorithm
and analysis to ensure consistency between machines; see Section 1.4 below for more details.

Note that only our Result 4 is shared with the later paper of Ghaffari et al. [40]: Result 3
appears only in our paper, and is entirely specific to the particular techniques that we use.

6.4 Our Techniques
Both of our results are based on a novel application of edge degree constrained subgraphs (EDCS)
that were previously introduced by Bernstein and Stein [21] for maintaining large matchings in
dynamic graphs. Previous work on EDCS [21, 22] focused on how large a matching an EDCS
contains and how it can be maintained efficiently in a dynamic graph. For the two results of this
paper, we instead focus on the structural properties of the EDCS, and prove several new facts in
this regard.

For Result 3, we identify the EDCS as a sparse certificate for large matchings and small vertex
covers which are quite robust to sampling and composition: an ideal combination for a randomized
coreset. For Result 4, we use the following recursive procedure, which crucially relies upon on the
robustness properties of the EDCS proved in Result 3: we repeatedly compute an EDCS of the
underlying graph in a distributed fashion, redistribute it again amongst multiple machines, and
recursively solve the problem on this EDCS to compute an O(1)-approximation to matching and
vertex cover. We therefore limit the memory on each machine to only O(n) (even O(n/polylog(n)))
at the cost of increasing the number of rounds from O(1) to O(log log n). Additional ideas are needed
to ensure that the approximation ratio of the algorithm does not increase beyond a fixed constant
as a result of repeatedly computing an EDCS of the current graph in O(log log n) iterations.

Comparison of techniques. Result 3 uses the definition of EDCS from [21,22] but uses it in an
entirely different setting, and hence we prove and use novel properties of EDCS in this work.

Result 4 relies on the high-level technique of vertex sampling from Czumaj et al. [29]: instead
of partitioning the edges of the graph, each machine receives a random sample of the vertices, and
works on the resulting induced subgraph. Other than this starting point, our approach proceeds
along entirely different lines from [29], in terms of both the local algorithm computed on each
subgraph and in the analysis. The main approach in [29] is round compression, which corresponds
to compressing multiple rounds of a particular distributed algorithm into smaller number of MPC
rounds by maintaining a consistent state across the local algorithms computed on each subgraph
(using a highly non-trivial local algorithm and analysis). Our results, on the other hand, do not
correspond to a round compression approach at all and we do not require any consistency in the local
algorithm on each machine. Instead, we rely on structural properties of the EDCS that we prove
in this paper, independent of the algorithms that compute these subgraphs. This allows us to bypass
many of the technical difficulties arising in maintaining a consistent state across different machines
which in turn results in improved bounds and a considerably simpler algorithm and analysis.

6.5 Related Work
Maximum matching and minimum vertex cover are among the most studied problems in the context
of massive graphs including in MPC model and MapReduce-style computation [4,5,12,20,29,40,45,
56], streaming algorithms [3–6, 13, 14, 26–28, 34–38, 41, 44, 49, 50, 54, 55, 58, 59, 61, 70], simultaneous
communication model and similar distributed models [9,12–14,33,44,47], dynamic graphs [17,21,22,
65, 68, 72], and sub-linear time algorithms [46, 66, 67, 69, 74]. Beside the results mentioned already,
most relevant to our work are the polylog(n)-space polylog(n)-approximation algorithm of [50]
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for estimating the size of a maximum matching in random stream, and the (3/2)-approximation
communication protocol of [41] when the input is (adversarially) partitioned between two parties
and the communication is from one party to the other one (as opposed to simultaneous which we
studied). However, the techniques in these results and ours are completely disjoint.

Coresets, composable coresets, and randomized composable coresets are respectively introduced
in [2], [48], and [62]. Composable coresets have been studied previously in nearest neighbor search [1],
diversity maximization [48,75], clustering [16,18], and submodular maximization [15,30,31,48,62].
Moreover, while not particularly termed a composable coreset, the “merge and reduce” technique in
graph streaming literature (see [59], Section 2.2) is identical to composable coresets.

7 Preliminaries
Notation. For a graph G(V,E), we use MM(G) to denote the maximum matching size in G and
VC(G) to denote the minimum vertex cover size. For any subset of vertices V ′ ⊆ V and any subset
of edges E′ ⊆ E, we use V ′(E′) to denote the set of vertices in V ′ that are incident on edges of
E′ and E′(V ′) to denote the set of edges in E′ that are incident on vertices of V ′. For any vertex
v ∈ V , we use dG(v) to denote the degree of v in the graph G.

We use capital letters to denote random variables. Let {Xi}ni=1 and {Yi}ni=1 be a sequence of
random variables on a common probability space such that E [Xi | Y1, . . . , Yi−1] = Xi−1 for all i.
The sequence {Xi} is referred to as a martingale with respect to {Yi}. A summary of concentration
bounds we use in this paper appears in Appendix B.1.

Sampled Subgraphs. Throughout the paper, we work with two different notion of sampling a
graph G(V,E). For a parameter p ∈ (0, 1),

• A graph GE
p (V,Ep) is an edge sampled subgraph of G iff the vertex set of GE

p and G are the
same and every edge in E is picked independently and with probability p in Ep.

• A graph GV
p (Vp, Ep) is a vertex sampled (induced) subgraph of G iff every vertex in V is sampled

in Vp independently and with probability p and GV
p is the induced subgraph of G on Vp

7.1 The Massively Parallel Computation (MPC) Model
We adopt the most stringent model of modern parallel computation among [10, 19, 42, 53], the
so-called Massively Parallel Computation (MPC) model of [19]. Let G(V,E) with n := |V | and
m := |E| be the input graph. In this model, there are p machines, each with a memory of size s and
one typically requires that both p, s = m1−Ω(1) i.e., polynomially smaller than the input size [10,53].
Computation proceeds in synchronous rounds: in each round, each machine performs some local
computation and at the end of the round machines exchange messages to guide the computation
for the next round. All messages sent and received by each machine in each round have to fit into
the local memory of the machine. This in particular means that the length of the messages on each
machine is bounded by s in each round. At the end, the machines collectively output the solution.

7.2 Basic Graph Theory Facts
Fact 7.1. For any graph G(V,E), MM(G) ≤ VC(G) ≤ 2 ·MM(G).

The following propositions are well-known.

Proposition 7.2. Suppose M and V ′ are respectively, a matching and a vertex cover of a graph G
such that α · |M | ≥ |V ′|; then, both M and V ′ are α-approximation to their respective problems.

Proof. VC(G) ≥
Fact 7.1

MM(G) ≥ |M | ≥ 1
α · |V

′| ≥ 1
α · VC(G) ≥

Fact 7.1

1
α ·MM(G).
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Proposition 7.3. Suppose G(V,E) is a graph with maximum degree ∆ and Vhigh is the set of all
vertices with degree at least γ ·∆ in G for γ ∈ (0, 1). Then, MM(G) ≥ γ·∆

2·(∆+1) · |Vhigh|.

Proof. By Vizing’s theorem [73], G can be edge colored by at most ∆ +1 colors. As each color class
forms a matching, this means that there exists a matching M in G with |M | ≥ |E|

∆+1 . Moreover, we
have |E| ≥ 1

2 · |Vhigh| · γ ·∆, finalizing the proof.

7.3 Edge Degree Constrained Subgraph (EDCS)
We introduce edge degree constrained subgraphs (EDCS) in this section and present several of their
properties which are proven in previous work. We emphasize that all other properties of EDCS
proven in the subsequent sections are new to this paper.

An EDCS is defined formally as follows.

Definition 4 ([21]). For any graph G(V,E) and integers β ≥ β− ≥ 0, an edge degree constraint
subgraph (EDCS) (G, β, β−) is a subgraph H := (V,EH) of G with the following two properties:

(P1) For any edge (u, v) ∈ EH : dH(u) + dH(v) ≤ β.
(P2) For any edge (u, v) ∈ E \ EH : dH(u) + dH(v) ≥ β−.

We sometimes abuse the notation and use H and EH interchangeably.

In the remainder of the paper, we use the terms “Property (P1)” and “Property (P2)” of EDCS
to refer to the first and second items in Definition 4 above.

One can prove the existence of an EDCS(G, β, β−) for any graph G and parameters β− < β
using the results in [22] (Theorem 3.2) which in fact shows how to maintain an EDCS efficiently
in the dynamic graph setting. As we are only interested in existence of EDCS in this paper, we
provide a simpler and self-contained proof of this fact in Appendix B.2, which also implies a simple
polynomial time algorithm for computing any EDCS of a given graph G.

Lemma 7.4. Any graph G contains an EDCS(G, β, β−) for any parameters β > β−.

It was shown in [21] (bipartite graphs) and [22] (general graphs) that for appropriate parameters
and EDCS always contains an (almost) 3/2-approximate maximum matching of G. Formally:

Lemma 7.5 ( [21, 22]). Let G(V,E) be any graph and ε < 1/2 be a parameter. For parameters
λ ≥ ε

100 , β ≥ 32λ−3, and β− ≥ (1 − λ) · β, in any subgraph H := EDCS(G, β, β−), MM(G) ≤(
3
2 + ε

)
·MM(H).

Lemma 7.5 implies that an EDCS of a graph G(V,E) preserves the maximum matching of G
approximately. We also show a similar result for vertex cover. The basic idea is that in addition to
computing a vertex cover for the subgraph H(to cover all the edges in H), we also add to the vertex
cover all vertices that have degree at least ≥ β−/2 in H, which by Property (P2) of an EDCS covers
all edges in G \H.

Lemma 7.6. Let G(V,E) be any graph, ε < 1/2 be a parameter, and H := EDCS(G, β, β−)
for parameters β ≥ 4

ε and β− ≥ β · (1− ε/4). Suppose Vhigh is the set of vertices v ∈ V with
dH(v) ≥ β−/2 and Vvc is a minimum vertex cover of H; then Vhigh ∪ Vvc is a vertex cover of G
with size at most (2 + ε) · VC(H) (note that VC(H) ≤ VC(G)).

Proof. We first argue that Vhigh∪Vvc is indeed a feasible vertex cover of G. To see this, notice that
any edge e ∈ H is covered by Vvc, and moreover by Property (P2) of EDCS, any edge e ∈ E \H
has at least one endpoint with degree at least β−/2 in H and hence is covered by Vhigh. In the
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following, we bound the size of Vhigh \ Vvc by (1 + ε) · |Vvc|, which finalizes the proof as clearly
|Vvc| = VC(H).

Define S := Vhigh \ Vvc and let N(S) be the set of all neighbors of S in the EDCS H. Since
S is not part of the vertex cover Vvc of H, we should have N(S) ⊆ Vvc as otherwise some edges
between S and N(S) would not be covered by the vertex cover Vvc. Now, since any vertex in S
has degree at least β−/2, we should have that degree of any vertex in N(S) is at most β − β−/2
in order to satisfy Property (P1) of EDCS H. Let E(S) denote the set of edges incident on S in
H. As all vertices in S belong to Vhigh, we have that |E(S)| ≥ |S| · β−/2. On the other hand, as
all edges incident on S are going into N(S) by definition, and since degree of vertices in N(S) are
bounded by β − β−/2, we have |E(S)| ≤ |N(S)| · (β − β−/2). As such,

|S| · β−/2 ≤ |N(S)| ·
(
β − β−/2

)
≤ |Vvc| · (1 + ε) · β−/2,

implying that |S| ≤ (1 + ε) · |Vvc|, finalizing the proof.

8 Warmup: A 3-Approximation Coreset for Matching
A natural randomized coreset for the matching problem was previously proposed by [12]: simply
compute a maximum matching of each graph G(i). We refer to this randomized coreset as the
MaxMatching coreset. It was shown in [12] that MaxMatching is an O(1)-approximation randomized
coreset for the matching problem (the hidden constant in the O-notation was bounded by 9 in [12]).
As a warm up, we propose a better analysis of this randomized coreset in this section.

Theorem 8. Let G(V,E) be a graph with MM(G) = ω(k log n) and G(1), . . . , G(k) be a random k-
partition of G. Any maximum matching of the graph G(i) is a (3 + o(1))-approximation randomized
composable coreset of size O(n) for the maximum matching problem.

Assumption on MM(G). In this section, we follow [12] in assuming that MM(G) = ω(k log n)
since otherwise we can immediately obtain a (non-randomized) composable coreset with approxi-
mation ratio one (an exact maximum matching) and size Õ(k2) for the matching problem using the
results in [26].

A crucial building block in our proof of Theorem 8 is a new concentration result for the size of
maximum matching in edge sampled subgraphs that we prove in the next section. This result is
quite general and can be of independent interest.

8.1 Concentration of Maximum Matching Size under Edge Sampling
Let G(V,E) be any arbitrary graph and p ∈ (0, 1) be a parameter (possibly depending on size of the
graph G). Define GE

p (V,Ep) as a subgraph of G obtained by sampling each edge in E independently
and with probability p, i.e., an edge sampled subgraph of G. We show that MM(Gp) is concentrated
around its expected value.

Lemma 8.1. Let G(V,E) be any arbitrary graph, p ∈ (0, 1) be a parameter, and E
[
MM(GE

p )
]
≤ µ.

For any λ > 0,

Pr
( ∣∣∣MM(GE

p )− E
[
MM(GE

p )
]∣∣∣ ≥ λ) ≤ 2 · exp

(
−λ

2 · p
2 · µ

)
.

Proof. For simplicity, define Gp := GE
p . Let C be any minimum vertex cover in the graph G. We

use vertex exposure martingales over vertices in C to prove this result. Fix an arbitrary ordering of
vertices in C and for any v ∈ C, define C<v as the set of vertices in C that appear before v in this
ordering. For each v ∈ C, we define a random variable Yv ∈ {0, 1}V \C

<v

as a vector of indicators
whether a possible edge (i.e., an edge already in G) between the vertices v and u ∈ V \C<v appears
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in Gp or not. Since C is a vertex cover of G, every edge in G is incident on some vertex of C.
As a result, the graph Gp is uniquely determined by the vectors Y1, . . . , Y|C|. Define a sequence of
random variables {Xi}|C|i=1, whereby Xi = E [MM(Gp) | Y1, . . . , Yi]. The following claim is standard.

Claim 8.2. The sequence {Xi}|C|i=1 is a martingale with respect to the sequence {Yi}|C|i=1.

Proof. For any i ≤ |C|,

E [Xi | Y1, . . . , Yi−1] = E
(y1,...,yi−1)

[
E [MM(Gp) | Y1 = y1, . . . , Yi−1 = yi−1, Yi] | Y1 = y1, . . . , Yi−1 = yi−1

]
= E

(y1,...,yi−1)

[
MM(Gp) | Y1 = y1, . . . , Yi−1 = yi−1

]
(as we are “averaging out” Yi in the outer expectation)

= E
[
MM(Gp) | Y1, . . . , Yi−1

]
= Xi−1.

Notice that X0 := E [MM(Gp)] and X|C| = MM(Gp) as fixing Y1, . . . , Y|C| uniquely determines
the graph Gp. Hence, we can use Azuma’s inequality to show that value of X|C| is close to X0 with
high probability. To do this, we need a bound on |C|, as well as each term |Xi −Xi−1|. Bounding
each |Xi −Xi−1| term is quite easy; the set of edges incident on the vertex i can only change the
maximum matching in Gp by 1 (as i can only be matched once), and hence |Xi −Xi−1| ≤ 1. In the
following, we also bound the value of |C|.

Claim 8.3. |C| ≤ 2 · µ/p.

Proof. Since size of a minimum vertex cover of a graph G is at most twice the size of its maximum
matching (Fact 7.1), we have that |C| ≤ 2 · MM(G). It is also straightforward to verify that
p ·MM(G) ≤ E

[
MM(Gp)

]
≤ µ, since p fraction of the edges of any maximum matching of G appear

in Gp in expectation; hence |C| ≤ 2 · µ/p.

We are now ready to finalize the proof. By setting ci = 1 for all i ≤ |C|, we can use Azuma’s
inequality (Proposition B.1) with parameters λ and ci for the martingales {Xi}, and obtain that,

Pr
(
|MM(Gp)− E [MM(Gp)]| ≥ λ

)
= Pr

( ∣∣X|C| −X0

∣∣ ≥ λ) ≤
Proposition B.1

2 · exp

(
− λ2∑

i∈C c
2
i

)
= 2 · exp

(
− λ

2

|C|

)
≤

Claim 8.3
2 · exp

(
−λ

2 · p
2 · µ

)
finalizing the proof.

8.2 Proof of Theorem 8

Let G(V,E) be any arbitrary graph and G(1), . . . , G(k) be a random k-partition of G. Recall that
MaxMatching coreset simply computes a maximum matching Mi on each graph G(i) for i ∈ [k];
hence, we only need to show that the graph H(V,M1 ∪ . . .∪Mk) has a large matching compared to
the graph G.

Let M? be any fixed maximum matching in G, and let µ := |M?| = MM(G). Our approach is
to show that either each graph G(i) has a large matching already, i.e., |Mi| ≥ µ/3, or many edges
of M? are picked in Mi as well. In the latter case, the union of edges in Mi for i ∈ [k] has a large
intersection with M? and hence contains a large matching.

Define G−(V,E−) whereby E− := E \M?. Let G−i := G−∩G(i) be the intersection of the graph
G(i) and G−. Finally, define µ−i as the maximum matching size in G−i . Using our concentration
result from the previous section, we can show that,
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Claim 8.4. Let ε ∈ (0, 1) be a parameter. Suppose µ ≥ 4 · ε−2 · k log n; then, there exists an
integer µ− ∈ [n] such that with probability 1− o(1) (over the random k-partition), µ−i = µ− ± ε · µ
simultaneously for all i ∈ [k].

Proof. Let p = 1/k; the graph G−i is a subgraph of G− obtained by picking each edge in G−

independently and with probability p. Let µ− := E
[
MM(G−i )

]
≤ µ (notice that the marginal

distribution of G−i graphs for all i ∈ [k] are identical). By setting λ = ε · µ in Lemma 8.1, we have
that,

Pr
(∣∣µ−i − µ−∣∣ ≥ λ) ≤

Lemma 8.1
2 · exp

(
−ε

2 · µ2 · p
2 · µ

)
≤ 2 · exp (−2 log n) ≤ 1

n2

where the second inequality is by the assumption on the value of µ. Taking a union bound over all
k ≤ n subgraphs G−i for i ∈ [k] finalizes the proof.

In the following, we condition on the event in Claim 8.4. We now have,

Lemma 8.5. Let µ, µ− and ε be as in Claim 8.4. If µ− ≤ µ/3, then
∣∣∣⋃k

i=1Mi ∩M?
∣∣∣ ≥ µ/3−3ε ·µ

w.p. 1− o(1).

Proof. Fix an index i ∈ [k] and notice that conditioning on the event in Claim 8.4, only fixes the
set of edges in G−i . Let M−i be any maximum matching in G−i ; by definition, µ−i =

∣∣M−i ∣∣. By
conditioning on the event in Claim 8.4, we have µ−i ≤ µ− + 2ε · µ. It is straightforward to verify
that there are at least |M?| − 2 ·

∣∣M−i ∣∣ = µ − µ−i ≥ µ/3 − 2ε · µ edges e in M? such that neither
of endpoints of e are matched by M−i . We refer to these edges as free edges and use M?

f ⊆ M? to
denote them.

Note that even after conditioning on G−i , the edges in M?, and consequently M?
f , appear in the

graph G(i) independently and with probability 1/k. As such, using a Chernoff bound (by assumption
on the value of µ), w.p. 1− 1/n2,

∣∣∣M?
f

∣∣∣ /k − ε · µ/k edges of M?
f appear in G(i). Since these edges

can be directly added to the matching M−i (as neither endpoints of them are matched in M−i ), this
implies that there exists a matching of size µ−i + 1

k · (µ/3− 3ε · µ) in G(i) w.p. 1− 1/n2.
Now let Mi be the maximum matching computed by MaxMatching; the above argument implies

that |Mi| ≥ µ−i + 1
k · (µ/3− 3ε · µ). On the other hand, notice that

∣∣Mi ∩G−i
∣∣ ≤ µ−i as Mi ∩ G−i

forms a matching in the graph G−i and µ−i denotes the maximum matching size in this graph. This
means that |Mi ∩M?| =

∣∣Mi \G−i
∣∣ ≥ 1

k ·(µ/3− 3ε · µ). To finalize the proof, notice that by a union
bound over all k matchings Mi, we have that with probability 1− 1/n,∣∣∣∣∣

k⋃
i=1

Mi ∩M?

∣∣∣∣∣ =
k∑
i=1

|Mi ∩M?| ≥ k · 1

k
· (µ/3− 3ε · µ) = µ/3− 3ε · µ.

We can now easily prove Theorem 8.

Proof of Theorem 8. By our assumption that µ = MM(G) = ω(k log n), we can take ε in Claim 8.4
and Lemma 8.5 to be some arbitrary small constant, say ε = o(1). Define µ− as in Lemma 8.5. If
µ− > µ/3, we are already done as by Claim 8.4, for any i ∈ [k], |Mi| ≥ µ−− o(µ) ≥ µ/3− o(µ) and
hence the union of matchings M1, . . . ,Mk surely has a (3 + o(1)) approximate matching. On the
other hand, if µ− ≤ µ/3, we can apply Lemma 8.5, and argue that µ/3−o(µ) edges of the matching
M? appear in the union of matchings M1, . . . ,Mk, which finalizes the proof.
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8.3 Lower Bound on Approximation Ratio of MaxMatching

We also show that there exists a graph for which the approximation ratio of MaxMatching is arbi-
trarily close to 2. This implies that we cannot improve the analysis of MaxMatching much further
and in particular beat the approximation ratio of 2.

Lemma 8.6. There exists a graph G(V,E) such that for any random k-partition of G (k ≤ n1−δ

for any constant δ > 0), the MaxMatching coreset can only find a matching of size at most
(

1
2 + 1

k

)
·

MM(G) with high probability.

Proof. The vertex set of the graph G consists of four sets of vertices L1, L2, R1, R2 with |L1| = n
2 + n

k
and |L2| = |R1| = |R2| = n

2 . G is a bipartite graph with L1 ∪ L2 on one side of the bipartition
and R1 ∪ R2 on the other side. There is a complete bipartite graph between L1 and R2, a perfect
matching between L2 and R2 and a matching of size |R1| between L1 and R1.

It is easy to verify that there exists a matching of size |R1|+|R2| = n in G and hence MM(G) ≥ n.
Suppose we create a random k-partition G(1), . . . , G(k) of G and each machine i ∈ [k] computes an
arbitrary maximum matching Mi of its input graph (i.e., compute the MaxMatching coreset). In
the following, we argue that the maximum matching in the graph H(V,M1 ∪ . . . ,Mk) is of size
(1

2 + 1
k ) · n with high probability, which concludes the proof.

To prove the lemma, we need the following simple claim about the maximum matching in the
edge sampled subgraphs of G.

Claim 8.7. Suppose GE
p (V,Ep) is an edge sampled subgraph of G with probability p = 1/k; then,

w.p. 1− 1/n5, there exists a matching Mp in G such that:

1. Mp is a maximum matching in Gp, i.e., |Mp| = MM(G).

2. No edges between L2 and R2 belong to Mp.

Proof. A simple application of Chernoff bound ensures that the total number of edges between L1

and R1 in Gp is at most 2p · n = n/k with probability at least 1 − 1/n10. In the following, we
condition on this event. Define M1,1 as the matching consisting of the edges between L1 and R1 in
Gp and let L−1 := L1 \ L1(M1,1) be the set of vertices in L1 that are not incident on M1,1.

Consider the graph between L−1 and R2. Note that since |M1,1| ≤ n/k, we have
∣∣L−1 ∣∣ ≥ |R2|.

By the independence in the sampling of edges and the fact that in G, L−1 and R1 forms a bipartite
clique, the set of edges between L−1 and R2 in Gp form a random bipartite graph with probability
of having each edge equal to p = 1/k = ω(log n). Using standard facts about random graphs (see,
e.g., [24], Chapter 7), this implies that there exists a matching of size |R2| between L−1 and R2 in
Gp with probability 1− 1/n10. Let Mp be the union of this matching and M1,1.

It is clear that Mp does not have any edges between L2 and R2. To see that Mp is indeed a
maximum matching of Gp, notice that all vertices in R1 ∪ R2 in Gp that have non-zero degree are
matched by Mp and hence there cannot be any larger matching in G.

We are now ready to finalize the proof of Lemma 8.6. Recall that each graph G(i) is an edge
sampled subgraph of G with probability 1/k. We can apply Claim 8.7 to each graph G(i) and by
a union bound, w.p. 1− 1/n4, there exists a suitable maximum matching M (i)

p in each graph G(i).
Since we are choosing an arbitrary maximum matching of G(i) as its coreset, we can assume that
M

(i)
p would be chosen from each graph G(i), i.e., Mi = M

(i)
p for all i ∈ [k]. This implies that no edge

incident to vertices in L2 are chosen among all coresets M1 ∪ . . . ∪Mk. As a result, the maximum
matching in the graph H(V,M1 ∪ . . . ∪Mk) can have size at most |L1| =

(
1
2 + 1

k

)
· n, finalizing the

proof as MM(G) = n.

22



9 New Properties of Edge Degree Constrained Subgraphs
We study further properties of EDCS in this section. Although EDCS was used prior to our work,
all the properties proven in this section are entirely new to this paper and look at the EDCS from
a different vantage point.

Previous work in [21, 22] studied the EDCS from the perspective of how large of matching it
contains and how it can be maintained efficiently in a dynamically changing graph. In this paper,
we prove several new interesting structural properties of the EDCS itself. In particular, while it
is easy to see that in terms of edge sets there can be many different EDCS of some fixed graph
G(V,E) (consider G being a complete graph), we show that the degree distributions of every EDCS
(for the same parameters β and β−) are almost the same. In other words, the degree of any vertex
v is almost the same in every EDCS of G(V,E). This is in sharp contrast with similar objects
such as maximum matchings or b-matchings, which can vary a lot within the same graph. This
semi-uniqueness renders the EDCS extremely robust under sampling and composition as we prove
next in this section.

These new structural results on EDCS are the main properties that allows their use in our
coresets and parallel algorithms in the rest of the paper. In fact, our parallel algorithms in Section 11
are entirely based on these results and do not rely at all on the fact that an EDCS contains a large
matching (i.e., do not depend on Lemma 7.5 at all).

9.1 Degree Distribution Lemma
Lemma 9.1 (Degree Distribution Lemma). Fix a graph G(V,E) and parameters β, β− = (1−λ) ·β
(for λ < 1/100). For any two subgraphs A and B that are EDCS(G, β, β−), and any vertex v ∈ V ,

|dA(v)− dB(v)| = O(log n) · λ1/2 · β.

In the rest of this section, we fix the parameters β, β− and the two EDCS A and B in Lemma 9.1.
The general strategy of the proof is as follows. We start with a set S1 of all vertices which has the
most difference in degree between A and B. By considering the two-hop neighborhood of these
vertices in A and B, we show that there exists a set S2 of vertices in V such that the difference
between the degree of vertices in A and B is almost the same as vertices in S1, while size of S2 is
a constant factor larger than S1. We then use this argument repeatedly to construct the next set
S3 and so on, whereby each set is larger than the previous one by a constant factor, while the gap
between the degree of vertices in A and B remains almost the same as the previous set. As this
geometric increase in the size of sets can only happen in a “small number” of steps (otherwise we
run out of vertices), we obtain that the gap between the degree of vertices in S1 could have not
been “too large” to begin with. We now formalize this argument, starting with a technical lemma
which allows us to obtain each set Si from the set Si−1 in the above argument.

Lemma 9.2. Fix an integer D > 2λ1/2 · β and suppose S ⊆ V is such that for all v ∈ S, we have
dA(v)− dB(v) ≥ D. Then, there exists a set of vertices S′ ⊇ S such that |S′| ≥ (1 + 2λ1/2) · |S| and
for all v ∈ S′, dA(v)− dB(v) ≥ D − 2λ · β.

Proof. We define the following two sets T and T ′:

• T is the set of all neighbors of vertices in S using only the edges in A \ B. In other words,
T := {v ∈ V | ∃u ∈ S ∧ (u, v) ∈ A \B}.
• T ′ is the set of all neighbors of vertices in T using only the edges in B \ A. In other words,
T ′ := {w ∈ V | ∃v ∈ T ∧ (v, w) ∈ B \A}.

We start by proving the following property on the degree of vertices in the sets T and T ′.

23



Claim 9.3. We have,

• for all v ∈ T , dB(v)− dA(v) ≥ D − λ · β.
• for all w ∈ T ′, dA(w)− dB(w) ≥ D − 2λ · β.

Proof. For the first part, since v ∈ T , it means that there exists an edge (u, v) ∈ A \ B such that
u ∈ S. Since (u, v) belongs to A, by Property (P1) of an EDCS we have dA(v) ≤ β − dA(u) ≤
β−dB(u)−D. On the other hand, since (u, v) does not belong to B, by Property (P2) of an EDCS
we have dB(v) ≥ β − λ · β − dB(u), completing the proof for vertices in T .

For the second part, since w ∈ T ′, it means that there exists an edge (v, w) ∈ B \ A such
that v ∈ T . Since (v, w) does not belong to A, by Property (P2) of an EDCS we have dA(w) ≥
β − λ · β − dA(v). Moreover, since (u, v) belongs to B, by Property (P1) of an EDCS, we have,
dB(w) ≤ β − dB(v). This means that dA(w) − dB(w) ≥ dB(v) − dA(v) − λ · β which is at least
D − 2λ · β by the first part.

Notice that since D > 2λ · β, by Claim 9.3, for any vertex v ∈ T , we have dB(v) > dA(v) and
hence S ∩ T = ∅ (similarly, T ∩ T ′ = ∅, but S and T ′ may intersect). We define the set S′ in the
lemma statement to be S′ := S ∪T ′. The bound on the degree of vertices in S′ follows immediately
from Claim 9.3 (recall that vertices in S already satisfy the degree requirement for the set S′). In
the following, we show that |T ′ \ S| ≥ 2λ1/2 · |S|, which finalizes the proof.

Recall that EA\B(S) and EA\B(S, T ) denote the set of edges in subgraph A \ B incident on
vertices S, and between vertices S and T , respectively. We have,∣∣EB\A(T, T ′ \ S)

∣∣ =
∣∣EB\A(T )

∣∣− ∣∣EB\A(T, S)
∣∣

(as all the edges in B \A that are incident on T are going to T ′)

≥
∣∣EA\B(T )

∣∣− ∣∣EB\A(T, S)
∣∣

(as by Claim 9.3, the degree of vertices in T is larger in B \A compared to A \B)

≥
∣∣EA\B(S)

∣∣− ∣∣EB\A(S)
∣∣

(as all edges in A \B incident on S are also incident on T )

≥ |S| ·D
(by the assumption on the degree of vertices in S in subgraphs A and B)

Finally, since B is an EDCS, the maximum degree of any vertex in T ′ \S is at most β and hence
there should be at least |S| · Dβ ≥ 2λ1/2 · |S| vertices in T ′ \ S (as D > 2λ1/2 · β).

Proof of Lemma 9.1. Suppose towards a contradiction that there exists a vertex v ∈ V s.t. D :=
dA(v)− dB(v) ≥ 3 ln (n) · λ1/2 · β (the other case is symmetric). Let D0 = D and S0 = {v} and for
i = 1 to t := λ−1/2 · (ln (n) + 1): define the set Si and integer Di by applying Lemma 9.2 to Si−1

and Di−1 (i.e., Si = S′ and Di = Di−1 − 2λ · β). By the lower bound on the value of D, for any
i ∈ [t], we have that Di ≥ D− i · 2λ · β > 2λ1/2 · β, and hence we can indeed apply Lemma 9.2. As
a result, we have,

|St| ≥
(

1 + 2λ1/2
)
· |St−1| ≥

(
1 + 2λ1/2

)t
· |S0| ≥ exp

(
λ1/2 · t

)
> exp (ln (n)) = n.

which is a contradiction as there are only n vertices in the graph G. Consequently, we obtain that
for any vertex v, |dA(v)− dB(v)| = O(log n) · λ1/2 · β, finalizing the proof.
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9.2 EDCS in Sampled Subgraphs
In this section, we prove two lemmas regarding the structure of different EDCS across sampled sub-
graphs. The first lemma concerns edge sampled subgraphs. We show that the degree distributions
of any two EDCS for two different edge sampled subgraphs of G is almost the same no matter how
the two EDCS are selected or even if the choice of the two subgraphs are not independent. This
Lemma is is used in our Result 3 on randomized coresets (see Section 10).

Lemma 9.4 (EDCS in Edge Sampled Subgraphs). Fix any graph G(V,E) and p ∈ (0, 1). Let G1 and
G2 be two edge sampled subgraphs of G with probability p (chosen not necessarily independently).
Let H1 and H2 be arbitrary EDCSs of G1 and G2 with parameters (β, (1− λ) · β). Suppose β ≥
750 · λ−2 · ln (n), then, with probability 1− 4/n9, simultaneously for all v ∈ V :

|dH1(v)− dH2(v)| ≤ O(log n) · λ1/2 · β.

We also prove a qualitatively similar lemma for vertex sampled subgraphs. This is needed in
Result 4 for parallel algorithms (see Section 11). The main difference here is that there will be a
huge gap between the degree of a vertex between the two EDCS if the vertex is sampled in one
subgraph but not the other one. However, we show that the degree of vertices that are sampled in
both subgraphs are almost the same across the two different (and arbitrarily chosen) EDCS for the
subgraphs.

Lemma 9.5 (EDCS in Vertex Sampled Subgraphs). Fix any graph G(V,E) and p ∈ (0, 1). Let
G1 and G2 be two vertex sampled subgraphs of G with probability p (chosen not necessarily inde-
pendently). Let H1 and H2 be arbitrary EDCSs of G1 and G2 with parameters (β, (1− λ)β). If
β ≥ 750 · λ−2 · ln (n), then, with probability 1− 4/n9, simultaneously for all v ∈ G1 ∩G2:

|dH1(v)− dH2(v)| ≤ O(log n) · λ1/2 · β.

The proof of both these lemmas are along the following lines. We start with an EDCS H of the
original graph G with parameters (almost) (β/p, β−/p). We then consider the set of edges from H in
each of the sampled subgraphs G1 and G2, i.e., the two subgraphs H ′1 := G1∩H and H ′2 := G2∩H.
We use the randomness in the process of sampling subgraphs G1 and G2 to prove that with high
probability both H ′1 and H ′2 form an EDCS for G1 and G2, respectively, with parameters (β, β−).
Finally, we use our degree distribution lemma from Section 9.1 to argue that for any arbitrary
EDCS H1 (resp. H2) of G1 (resp. G2), the degree distribution of H1 (resp. H2) is close to H ′1 (resp.
H ′2). Since the degree distributions of H ′1 and H ′2 are close to each other already (as they are both
sampled subgraphs of H), this finalizes the proof.

There are some technical differences in implementing the above intuition between the edge
sampled and vertex sampled subgraphs and hence we provide a separate proof for each case.

9.2.1 EDCS in Edge Sampled Subgraphs: Proof of Lemma 9.4

Proof of Lemma 9.4. We first prove that edge sampling an EDCS results in another EDCS for the
sampled subgraph.

Claim 9.6. Let H be an EDCS(G, βH , β
−
H) for parameters βH := (1 − λ

2 ) · βp and β−H := βH − 1.
Suppose Gp := GEp (V,Ep) is an edge sampled subgraph of G and Hp := H∩Gp; then, with probability
1− 2/n9:

1. For any vertex v ∈ V ,
∣∣dHp(v)− p · dH(v)

∣∣ ≤ λ
5 · β.

2. Hp is an EDCS of Gp with parameters (β, (1− λ) · β).

25



Proof. For any vertex v ∈ V , E
[
dHp(v)

]
= p · dH(v) and dH(v) ≤ βH by Property (P1) of EDCS

H. Moreover, since each neighbor of v in H is sampled in Hp independently, by Chernoff bound
(Proposition B.2), we have,

Pr
(∣∣dHp(v)− p · dH(v)

∣∣ ≥ λ

5
· β
)
≤ 2 · exp

(
−λ

2 · β
75

)
≤ 2 · exp (−10 lnn) =

2

n10
,

where the second inequality is by the lower bound on β in Lemma 9.5 statement. In the following,
we condition on the event that:

∀v ∈ V
∣∣dHp(v)− p · dH(v)

∣∣ ≤ λ

5
· β. (1)

This event happens with probability at least 1 − 2/n9 by above equation and a union bound on
|V | = n vertices. This finalizes the proof of the first part of the claim. We are now ready to prove
that Hp is indeed an EDCS(Gp, β, (1− λ) · β) conditioned on this event.

Consider any edge (u, v) ∈ Hp. Since Hp ⊆ H, (u, v) ∈ H as well. Hence, we have,

dHp(u) + dHp(v) ≤
Eq (1)

p ·
(
dH(u) + dH(v)

)
+

2λ

5
· β ≤ p · βH +

2λ

5
· β = (1− λ

2
) · β +

2λ

5
· β < β,

where the second inequality is by Property (P1) of EDCS H and the equality is by the choice of
βH . As a result, Hp satisfies Property (P1) of EDCS for parameter β.

Now consider an edge (u, v) ∈ Gp \Hp. Since Hp = Gp ∩H, (u, v) /∈ H as well. Hence,

dHp(u) + dHp(v) ≥
Eq (1)

p ·
(
dH(u) + dH(v)

)
− 2λ

5
· β ≥ p · β−H −

2λ

5
· β

= (1− λ

2
) · β − p− 2λ

5
· β > (1− λ) · β,

where the second inequality is by Property (P2) of EDCS H and the equality is by the choice of
β−H . As such, Hp satisfies Property (P2) of EDCS for parameter (1− λ) · β and hence Hp is indeed
an EDCS(Gp, β, (1− λ) · β).

We continue with the proof of Lemma 9.4. Let H be an EDCS(G, βH , β
−
H) for the parameters

βH , β
−
H in Claim 9.6. The existence of H follows from Lemma 7.4 as β−H < βH . Define Ĥ1 := H∩G1

and Ĥ2 := H ∩ G2. By Claim 9.6, Ĥ1 (resp. Ĥ2) is an EDCS of G1 (resp. G2) with parameters
(β, (1− λ)β) with probability 1− 4/n9. In the following, we condition on this event.

By Lemma 9.1 (Degree Distribution Lemma), since both H1 (resp. H2) and Ĥ1 (resp. Ĥ2) are
EDCS for G1 (resp. G2), the degree of vertices in both of them should be “close” to each other.
Moreover, since by Claim 9.7 the degree of each vertex in Ĥ1 and Ĥ2 is close to p times its degree
in H, we can argue that the vertex degrees in H1 and H2 are close. Formally, for any v ∈ V , we
have,

|dH1(v)− dH2(v)| ≤
∣∣∣dH1(v)− d

Ĥ1
(v)
∣∣∣+
∣∣∣dĤ1

(v)− d
Ĥ2

(v)
∣∣∣+
∣∣∣dĤ2

(v)− dH2(v)
∣∣∣

≤
Lemma 9.1

O(log n) · λ1/2 · β +
∣∣∣dĤ1

(v)− p · dH(v)
∣∣∣+
∣∣∣dĤ2

(v)− p · dH(v)
∣∣∣

≤
Claim 9.6

O(log n) · λ1/2 · β +O(1) · λ · β,

finalizing the proof.
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9.2.2 EDCS in Vertex Sampled Subgraphs: Proof of Lemma 9.5

Proof of Lemma 9.5. We first prove that vertex sampling an EDCS results in another EDCS for the
sampled subgraph.

Claim 9.7. Let H be an EDCS(G, βH , β
−
H) for parameters βH := (1 − λ

2 ) · βp and β−H := βH − 1.
Suppose Gp := GVp (Vp, Ep) is a vertex sampled subgraph of G and Hp := H ∩ Gp; then, with
probability 1− 2/n9:

1. For any vertex v ∈ Vp,
∣∣dHp(v)− p · dH(v)

∣∣ ≤ λ
5 · β.

2. Hp is an EDCS of Gp with parameters (β, (1− λ) · β).

Proof. For any vertex v ∈ Vp, E
[
dHp(v)

]
= p · dH(v) by the independent sampling of vertices and

dH(v) ≤ βH by Property (P1) of EDCS H. Moreover, since each neighbor of v in H is sampled in
Hp independently, by Chernoff bound (Proposition B.2), we have,

Pr
(∣∣dHp(v)− p · dH(v)

∣∣ ≥ λ

5
· β
)
≤ 2 · exp

(
−λ

2 · β
75

)
≤ 2 · exp (−10 lnn) =

2

n10
,

where the second inequality is by the lower bound on β in Lemma 9.5 statement. In the following,
we condition on the event that:

∀v ∈ Vp
∣∣dHp(v)− p · dH(v)

∣∣ ≤ λ

5
· β. (2)

which happens with probability at least 1− 2/n9 by above equation and a union bound on |Vp| ≤ n
vertices. This finalizes the proof of the first part of the claim. We are now ready to prove that Hp

is indeed an EDCS(Gp, β, (1− λ) · β) conditioned on this event.
Consider any edge (u, v) ∈ Hp. Since Hp ⊆ H, (u, v) ∈ H as well. Hence, we have,

dHp(u) + dHp(v) ≤
Eq (2)

p ·
(
dH(u) + dH(v)

)
+

2λ

5
· β ≤ p · βH +

2λ

5
· β = (1− λ

2
) · β +

2λ

5
· β < β,

where the second inequality is by Property (P1) of EDCS H and the equality is by the choice of
βH . As a result, Hp satisfies Property (P1) of EDCS for parameter β.

Now consider an edge (u, v) ∈ Gp \Hp. Since Hp = Gp ∩H, (u, v) /∈ H as well. Hence,

dHp(u) + dHp(v) ≥
Eq (2)

p ·
(
dH(u) + dH(v)

)
− 2λ

5
· β ≥ p · β−H −

2λ

5
· β

= (1− λ

2
) · β − p− 2λ

5
· β > (1− λ) · β,

where the second inequality is by Property (P2) of EDCS H and the equality is by the choice of
β−H . As such, Hp satisfies Property (P2) of EDCS for parameter (1− λ) · β and hence Hp is indeed
an EDCS(Gp, β, (1− λ) · β).

We continue with the proof of Lemma 9.5. Let H be an EDCS(G, βH , β
−
H) for the parameters

βH , β
−
H in Claim 9.7. The existence of H follows from Lemma 7.4 as β−H < βH . Define Ĥ1 := H∩G1

and Ĥ2 := H ∩ G2. By Claim 9.7, Ĥ1 (resp. Ĥ2) is an EDCS of G1 (resp. G2) with parameters
(β, (1− λ)β) with probability 1− 4/n9. In the following, we condition on this event.

By Lemma 9.1 (Degree Distribution Lemma), since both H1 (resp. H2) and Ĥ1 (resp. Ĥ2) are
EDCS for G1 (resp. G2), the degree of vertices in both of them should be “close” to each other.
Moreover, since by Claim 9.7 the degree of each vertex in Ĥ1 and Ĥ2 is close to p times its degree
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in H, we can argue that the degree of shared vertices in H1 and H2 are close. Formally, let v be a
vertex in both G1 and G2; we have,

|dH1(v)− dH2(v)| ≤
∣∣∣dH1(v)− d

Ĥ1
(v)
∣∣∣+
∣∣∣dĤ1

(v)− d
Ĥ2

(v)
∣∣∣+
∣∣∣dĤ2

(v)− dH2(v)
∣∣∣

≤
Lemma 9.1

O(log n) · λ1/2 · β +
∣∣∣dĤ1

(v)− p · dH(v)
∣∣∣+
∣∣∣dĤ2

(v)− p · dH(v)
∣∣∣

≤
Claim 9.7

O(log n) · λ1/2 · β +O(1) · λ · β,

finalizing the proof.

10 Randomized Coresets for Matching and Vertex Cover
We introduce our randomized coresets for matching and vertex cover in this section. Both of these
results are achieved by computing an EDCS of the input graph (for appropriate choice of parameters)
and then applying Lemmas 7.5 and 7.6.

10.1 Computing an EDCS from Random k-Partitions

Let G(V,E) be any arbitrary graph and G(1), . . . , G(k) be a random k-partition of G. We show that
if we compute an arbitrary EDCS of each graph G(i) (with no coordination across different graphs)
and combine them together, we obtain an EDCS for the original graph G.

1. Let G(1), . . . , G(k) be a random k-partition of the graph G.

2. For any i ∈ [k], compute C(i) := EDCS(G, β, (1− λ) · β) for parameters

λ = Θ

(
(
ε

log n
)2

)
and β := Θ(λ−3 · log n).

3. Let C :=
⋃k
i=1C

(i).

Lemma 10.1. With probability 1− 4/n7, the subgraph C is an EDCS(G, βC , β
−
C ) for parameters:

λC := O(log n) · λ1/2 , βC := (1 + λC) · k · β and β−C := (1− 2λC) · k · β.

Proof. Recall that each graph G(i) is an edge sampled subgraph of G with sampling probability
p = 1

k . By Lemma 9.4 for graphs G(i) and G(j) (for i 6= j ∈ [k]) and their EDCSs C(i) and C(j),
with probability 1− 4/n9, for all vertices v ∈ V :

|dC(i)(v)− dC(j)(v)| ≤ O(log n) · λ1/2 · β = λC · β. (3)

By taking a union bound on all
(
k
2

)
≤ n2 pairs of subgraphs G(i) and G(j) for i 6= j ∈ [k], the above

property holds for all i, j ∈ [k], with probability at least 1 − 4/n7. In the following, we condition
on this event.

We now prove that C is indeed an EDCS(G, βC , β
−
C ). First, consider an edge (u, v) ∈ C and let

j ∈ [k] be such that (u, v) ∈ C(j) as well. We have,

dC(u) + dC(v) =
k∑
i=1

dC(i)(u) +
k∑
i=1

dC(i)(v) ≤
Eq (3)

k · (dC(j)(u) + dC(j)(v)) + k · λC · β

≤ k · β + k · λCβ = βC . (by Property (P1) of EDCS C(j) with parameter β)
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Hence, C satisfies Property (P1) of EDCS for parameter βC .
Now consider an edge (u, v) ∈ G \C and let j ∈ [k] be such that (u, v) ∈ G(j) \C(j) (recall that

each edge in G is sent to exactly one graph G(j) in the random k-partition). We have,

dC(u) + dC(v) =

k∑
i=1

dC(i)(u) +

k∑
i=1

dC(i)(v) ≥
Eq (3)

k · (dC(j)(u) + dC(j)(v))− k · λC · β

≥ k · (1− λ) · β − k · λC · β ≥ (1− 2λC) · k · β = β−C .
(by Property (P2) of EDCS C(j) with parameter (1− λ) · β)

Hence, C also satisfies the second property of EDCS for parameter β−C , finalizing the proof.

10.2 EDCS as a Coreset for Matching and Vertex Cover
We are now ready to present our randomized coresets for matching and vertex cover using the EDCS
as the coreset, formalizing Result 3.

Theorem 9. Let G(V,E) be a graph and G(1), . . . , G(k) be a random k-partition of G. For any ε ∈
(0, 1), any EDCS(G(i), β, (1− λ) · β) for λ := Θ

(
( ε

logn)2
)
and β := Θ(ε−6 · log7 n) is a (3/2 + ε)-

approximation randomized composable coreset of size O(n · β) for the maximum matching problem.

Proof. By Lemma 10.1, the union of the coresets, i.e., the k EDCSs, is itself an EDCS(G, βC , β
−
C ),

such that β−C = (1−Θ(ε)) · βC . Hence, by Lemma 7.5, the maximum matching in this EDCS is of
size (2/3− ε) ·MM(G). The bound on the size of the coreset follows from Property (P1) of EDCS
as maximum degree in the EDCS computed by each machine is at most β and hence size of each
coreset is O(n · β) = Õε(n).

To present our coreset for the vertex cover problem, we need to slightly relax the definition of
randomized coreset. Following [12], we augment the definition of randomized coresets by allowing
the coresets to also contain a fixed solution (which is counted in the size of the coreset) to be
directly added to the final solution of the composed coresets. In other words, the coreset contains
both subsets of vertices (to be always included in the final vertex cover) and edges (to guide the
choice of additional vertices in the vertex cover). This definition is necessary for the vertex cover
problem due to the hard-to-verify feasibility constraint of this problem; see [12] for more details.

Theorem 10. Let G(V,E) be a graph and G(1), . . . , G(k) be a random k-partition of G. For any
ε ∈ (0, 1), any EDCS(G(i), β, (1− λ) · β) for λ := Θ

(
( ε

logn)2
)

and β := Θ(ε−6 · log7 n) plus the
set of vertices with degree larger than (1 − Θ(ε)) · β/2 in the EDCS (to be added directly to the
final vertex cover) is a (2 + ε)-approximation randomized composable coreset of size O(n ·β) for the
minimum vertex cover problem.

Proof. By Lemma 10.1, the union of the coresets, i.e., the k EDCSs, is itself an EDCS(G, βC , β
−
C )

C, such that β−C = (1−Θ(ε)) ·βC . Suppose first that instead of each coreset fixing the set of vertices
to be added to the final vertex cover, we simply add all vertices with degree more than β−C/2 to
the vertex cover and then compute a minimum vertex cover of C. In this case, by Lemma 7.6, the
returned solution is a (2 + ε)-approximation to the minimum vertex cover of G.

To complete the argument, recall that the degree of any vertex v ∈ V is essentially the same
across all machines (up to an additive term of ε ·β) by Lemma 9.4, and hence the set of vertices with
degree more than β−C/2 would be a subset of the set of fixed vertices across all machines. Moreover,
any vertex added by any machine to the final vertex cover has degree at least (1 − Θ(ε)) · β−C/2
and hence we can apply Lemma 7.6, with a slightly smaller parameter ε to argue that the returned
solution is still a (2 + ε)-approximation.
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Remark 10.2. In the proof of Theorem 10, we neglected the time necessary to compute a vertex
cover in the union of the coresets (as is consistent with the definition of randomized coresets). In
case we require this algorithm to run in polynomial time, we need to approximate the final vertex
cover in the union of the coresets as opposed to recover it exactly. In particular, by picking a 2-
approximation vertex cover in the union of coreset in the proof of Lemma 7.6, we obtain an (almost)
4-approximation to the vertex cover of G.

11 MPC Algorithms for Matching and Vertex Cover
In this section, we show that a careful adaptation of our coresets construction together with the
structural results proven for EDCS in Section 9 can be used to obtain MPC algorithms with much
smaller memory while increasing the number of required rounds to only O(log log n).

Theorem 11. There exists an MPC algorithm that given a graph G(V,E) with high probability
computes an O(1) approximation to both maximum matching and minimum vertex cover of G in
O(log log n+ log

(
n
s

)
) MPC rounds on machines of memory s = nΩ(1).

By setting s = O(n/polylog(n)) in Theorem 11, we achieve an O(1)-approximation algo-
rithm to both matching and vertex cover in O(log log n) MPC rounds on machines of memory
O(n/polylog(n)), formalizing Result 4.

In the following, for the sake of clarity, we mostly focus on proving Theorem 11 for the natural
case when memory per machine is s = Õ(n), and postpone the proof for all range of parameter s to
Section 11.5. The overall idea of our algorithm is as follows. Instead of the edge sampled subgraphs
used by our randomized coresets, we start by picking k = O(n) vertex sampled subgraphs of G
with sampling probability roughly 1/

√
n and send each to a separate machine. Each machine then

locally computes an EDCS of its input (with parameters β = polylog(n) and β− ≈ β) with no
coordination across the machines. Unlike the MPC algorithm obtained by our randomized coreset
approach (Corollary 6), where the memory per machine was as large as Θ(n

√
n), here we cannot

collect all these smaller EDCSes on a single machine of memory Õ(n). Instead, we repartition them
across the machines again (and discard remaining edges) and repeat the previous process on this
new graph. The main observation is that after each step, the maximum degree of the remaining
graph (i.e., the union of all EDCSes) would drop quadratically (e.g., from potentially Ω(n) to Õ(

√
n)

in the first step). As such, in each subsequent step, we can pick a smaller number of vertex sampled
subgraphs, each with a higher sampling probability than previous step, and still each graph fits into
the memory of a single machine. Repeating this process for O(log log n) steps reduces the maximum
degree of the remaining graph to polylog(n). At this point, we can store the final EDCS on a single
machine and solve the problem locally.

Unfortunately this approach on its own would only yield a (3/2)O(log logn) = polylog(n) approxi-
mation to matching, since by Lemma 7.5 each recursion onto an EDCS of the graph could introduce
a 3/2-approximation. A similar problem exists for vertex cover. In the proof of Lemma 7.6, com-
puting a vertex cover of G from its EDCS H involves two steps: we add to the vertex cover all
vertices with high degree in H to cover the edges in G\H, and then we separately compute a vertex
cover for the edges in H. Since H cannot fit into a single machine, the second computation is done
recursively: in each round, we find an EDCS of the current graph (which is partitioned amongst
many machines), add to the vertex cover all high degree vertices in this EDCS, and then recurse onto
the sparser EDCS. A straightforward analysis would only lead to an O(log log n) approximation.

We improve the approximation factor for both vertex cover and matching by showing that they
can serve as witnesses to each other. Every time we add high-degree vertices to the vertex cover,
we will also find a large matching incident to these vertices: we show that this can be done in O(1)
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parallel rounds. We then argue that their sizes are always within a constant factor of each other,
so both are a constant approximation for the respective problem (by Proposition 7.2).

The rest of this section is organized as follows. We first present our subroutine for computing
the EDCS of an input graph in parallel using vertex sampled subgraphs. Next, we present a simple
randomized algorithm for finding a large matching incident on high degree vertices of an input graph.
Finally, we combine these two subroutines to provide our main parallel algorithm for approximating
matching and vertex cover. We finish this section by specifying the MPC implementation of our
parallel algorithm and finalize the proof of Theorem 11.

11.1 A Parallel Algorithm for EDCS
We now present our parallel algorithm for computing an EDCS via vertex sampling. In this algo-
rithm, the edges of the input graph as well as the output EDCS will be partitioned across multiple
machines. In the following, we use a slightly involved method of sampling the vertices using limited
independence. This is due to technical reasons in the MPC implementation of this algorithm which
we explain in Remark 11.1. To avoid repeating the arguments, we present our algorithm for all range
of memory s = nΩ(1), but encourage the reader to consider the case of s = n for more intuition.

ParallelEDCS(G,∆, s). A parallel algorithm for EDCS of a graph G with maximum degree ∆ on
machines of memory Õ(s).

1. Define p = (200 log n) ·
√

s
n·∆ and k = 800 logn

p2
.

2. Create k vertex sampled subgraphs G(1), . . . , G(k) on k different machines as follows:

(a) Let κ := (20 log n). Each vertex v in G independently picks a κ-wise independent hash
function hv : [k]→ [1/p].

(b) The graph G(i) is the induced subgraph of G on vertices v ∈ V with hv(i) = 0.

3. Define parameters λ := (2 · log n)−3 and β := 750 · λ−2 · ln (n).

4. For i = 1 to k in parallel: Compute C(i) = EDCS(G(i), β, (1− λ) · β) locally on machine i.

5. Define the multi-graph C(V,EC) with EC :=
⋃k
i=1C

(i) (allowing for multiplicities). Notice
that this multi-graph is edge partitioned across the machines.

For any vertex v ∈ V , define I(v) ⊆ k as the set of indices of the subgraphs that sampled vertex
v. Notice that indices in I(v) are κ-wise independent random variables. Additionally, it is easy to
see that each graph G(i) is a vertex sampled subgraph of G with sampling probability p.

Remark 11.1. As opposed to the previous vertex sampling approach of Czumaj et al. [29] that
resulted in a partitioning of vertices of G across different subgraphs, our way of sampling subgraphs
in ParallelEDCS results in each vertex appearing in Θ(p ·k) different subgraphs with high probability.
This is necessary for our algorithm as we need to ensure that every edge of the input graph is sampled
in this process. However, this property introduces new challenges in the MPC implementation of
our algorithm as a naive implementation of this idea requires communicating Θ(p · k) messages per
each edge of the graph which cannot be done within the memory restrictions of the MPC model.
This is the main reason that we sample these subgraphs in ParallelEDCS with limited independence
as opposed to truly independently to reduce the communication necessary per each edge to O(log n).

We first prove some simple properties of ParallelEDCS.

Proposition 11.2. For ∆ ≥
(
n
s

)
·
(
400 · log12 (n)

)
, with probability 1− 2/n8,

1. For any vertex v ∈ V , |I(v)| = p · k ± λ · p · k.
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2. For any edge e ∈ E, there exists at least one index i ∈ [k] such that e belongs to G(i).

Proof. Fix any vertex v ∈ V . Clearly, E |I(v)| = p · k. Moreover, |I(v)| is sum of zero-one κ-wise
independent random variables and hence by Chernoff bound with bounded independence (Proposi-
tion B.3)

Pr (||I(v)| − E |I(v)|| ≥ λ · E |I(v)|) ≤ 2 · exp
(
−κ

2

)
≤ 2 · exp (−10 log n) ≤ 1/n10.

Note that E |I(v)| = p · k = Θ

(√
n·∆
s

)
, λ = (2 · log n)−3 and hence by the bound on ∆, we have

λ2 · E |I(v)| /2 = Θ(log n) = κ, and hence we can indeed apply Proposition B.3 here. By a union
bound on all n vertices, the first part holds w.p. ≥ 1− 1/n9.

We now prove the second part. Fix an edge e ∈ E and define the indicator random variables
X1, . . . , Xk where Xi = 1 iff e is contained in the graph G(i). Define X :=

∑k
i=1Xi to denote the

number of graphs the edge e belongs to. Clearly, E [Xi] = p2 for all i ∈ [k] and hence E [X] = p2 · k.
Moreover, the random variables Xi’s are κ-wise independent for κ = 20 log n. Hence, by Chernoff
bound with bounded independence (Proposition B.3), the probability that e belongs to no graph
G(i), i.e., X = 0 is at most,

Pr (X = 0) ≤ Pr
(
|X − E [X]| ≥ E [X]

)
≤ 2 · exp

(
−κ

2

)
≤ 2 · exp (−10 log n) ≤ 1/n10.

Again, note that E |X| = p2 · k = 800 log n = 2κ and hence we could apply Proposition B.3. By a
union bound on all O(n2) edges, the second part also holds w.p. at least 1− 1/n8. Another union
bound on this event and the event in the first part finalizes the proof.

We now prove that the graph C defined in the last line of ParallelEDCS is also an EDCS of G
with appropriate parameters. The proof is quite similar to that of Lemma 10.1 with some additional
care to handle the difference between vertex sampled subgraphs and edge sampled ones.

Lemma 11.3. For ∆ ≥
(
n
s

)
·
(
400 · log12 (n)

)
, with probability 1− 5/n7, C is an EDCS(G, βC , β

−
C )

for parameters:

λC := λ1/2 ·Θ(log n) = o(1), βC := p · k · (1 + λC) · β, and β−C = p · k · (1− λC) · β.

Proof. Recall that each graph G(i) is a vertex sampled subgraph of G with sampling probability p.
Hence, by Lemma 9.5 and a union bound, with probability 1 − 4/n7, for any two subgraphs C(i)

and C(j) for i, j ∈ [k], and any vertex v ∈ V (i) ∩ V (j), we have,

|dC(i)(v)− dC(j)(v)| ≤ O(log n) · λ1/2 · β. (4)

In the following, we condition on the events in Eq (4) and Proposition 11.2 which happen
together with probability at least 1− 5/n7.

We now prove that C is indeed an EDCS(G, βC , β
−
C ) for the given parameters. First, consider

an edge (u, v) ∈ C and let j ∈ [k] be such that (u, v) ∈ C(j) as well. We have,

dC(u) + dC(v) =
∑
i∈I(u)

dC(i)(u) +
∑
i∈I(v)

dC(i)(v)

≤
Eq (4)

|I(u)| · dC(j)(u) + |I(v)| · dC(j)(v) + (|I(u)|+ |I(v)|) ·O(log n) · λ1/2 · β

≤
Proposition 11.2

p · k · β +O(λ) · p · k · β + p · k ·O(log n) · λ1/2 · β

(by Property (P1) of EDCS C(j) with parameter β)
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≤ p · k · (1 + λC) · β = βC .

Hence, C satisfies Property (P1) of EDCS for parameter βC .
Now consider an edge (u, v) ∈ G\C and let j ∈ [k] be such that (u, v) ∈ G(j)\C(j) (the existence

of j follows from conditioning on the event in Proposition 11.2). We have,

dC(u) + dC(v) =
∑
i∈I(u)

dC(i)(u) +
∑
i∈I(v)

dC(i)(v)

≥
Eq (4)

|I(u)| · dC(j)(u) + |I(v)| · dC(j)(v)− (|I(u)|+ |I(v)|) ·O(log n) · λ1/2 · β

≥
Proposition 11.2

p · k · (1− λ) · β −O(λ) · p · k · β − p · k ·O(log n) · λ1/2 · β

(by Property (P2) of EDCS C(j) with parameter β)

≥ p · k · (1− λC) · β = β−C .

Hence, C also satisfies Property (P2) of EDCS for parameter β−C , finalizing the proof.

Before moving on, we prove a simple claim that ensures that the memory of Õ(s) per machine
in ParallelEDCS is enough for storing each subgraph G(i) and computing C(i) locally.

Claim 11.4. With probability 1 − 1/n18, the total number of edges in each subgraph G(i) of G in
ParallelEDCS(G,∆, s) is O(s · log2 n).

Proof. Let v be a vertex in G(i). By the independent sampling of vertices in a vertex sampled
subgraph, we have that E [dG(i)(v)] = p · dG(v) ≤ p ·∆ = Θ(

√
s·∆
n · log n). By Chernoff bound, with

probability 1−1/n20, degree of v is O(
√

s·∆
n · log n). We can then take a union bound on all vertices

in G(i) and have that with probability 1−1/n19, the maximum degree of G(i) is O(
√

s·∆
n · log n). At

the same time, the expected number of vertices sampled in G(i) is at most p · n = Θ(
√

s·n
∆ · log n).

Another application of Chernoff bound ensures that the total number of vertices sampled in G(i)

is O(
√

s·n
∆ · log n) with probability 1 − 1/n19. As a result, the total number of edges in G(i) is

O(
√

s·∆
n · log n) ·O(

√
s·n
∆ · log n) = O(s · log2 n) with probability at least 1− 1/n18.

11.2 Random Match Algorithm
In our main algorithm, we need a subroutine for finding a large matching incident on the set of “high”
degree vertices of a given graph G which its edges are initially partitioned across many machines.
In this section, we provide such an algorithm based on a simple randomized procedure that is easily
implementable in constant number of MPC rounds.

RandomMatch(G,S,∆). A parallel algorithm for finding a matching M incident on given vertices
S in a graph G with maximum degree ∆.

1. Sample each vertex in S with probability 1/2 independently to obtain a set S′.

2. For each vertex in S′ pick one of its incident edges to G\S′ uniformly at random. Let Esmpl
be the set of these edges.

3. Let M be the matching in Esmpl consists of all edges with unique endpoints; these are edges
(u, v) ∈ Esmpl such that neither u nor v are incident on any other edge of Esmpl.
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We prove that if the set S consists of high degree vertices of G, then RandomMatch(G,S,∆)
finds a large matching in S. Formally,

Lemma 11.5. Suppose G(V,E) is a graph with maximum degree ∆ ≥ 100 log n and S ⊆ V is such
that for all v ∈ S, dG(v) ≥ ∆/3. The size of the matching M := RandomMatch(G,S,∆) is in
expectation E |M | = Θ(|S|).

Proof. Fix any vertex v ∈ S′; we argue that with high probability, degree of v to vertices in G\S′ is
at least ∆/7. This follows immediately as in expectation, at most half of the neighbors of v belong
to S′ and we can apply Chernoff bound as ∆ ≥ 100 log n. We apply a union bound on all vertices
in S′ and in the following we condition on the event that all these vertices have at least ∆/7 edges
to G \ S′, which happens with high probability.

By construction, any vertex in S′ has degree exactly one in Esmpl. As such, to lower bound the
size of M , we only need to lower bound the number of vertices in G \ S′ that have degree exactly
one in Esmpl. Fix a vertex v ∈ S′ and consider the neighbor u ∈ G \ S′ of v in Esmpl. We know
that u has at most ∆ − 1 other neighbors in S′ and each of these neighbors are choosing u with
probability at most 7/∆ (as each of them has at least ∆/7 neighbors). Hence,

Pr
(
u has degree 1 in Esmpl

)
≥
(

1− 7

∆

)∆−1

= Θ(1).

As such, in expectation, Θ(S) vertices in G \ S′ also have degree exactly one in Esmpl, which
implies E |M | = Θ(|S|).

11.3 A Parallel Algorithm for Matching and Vertex Cover
We now present our main parallel algorithm. For sake of clarity, we present and analyze our
algorithm here for the case when the memory allowed per each machine is Õ(n). In Section 11.5,
we show how to easily extend this algorithm to the case when memory per machine is O(s) for any
choice of s = nΩ(1).

ParallelAlgorithm(G,∆). A parallel algorithm for computing a vertex cover Valg and a matching
Malg of a given graph G with maximum degree at most ∆.

1. If ∆ ≤
(
400 · log12 n

)
send G to a single machine and run the following algorithm locally:

Compute a maximal matching Malg in G and let Valg be the set of vertices matched by
Malg. Return Valg and Malg.

2. If ∆ >
(
400 · log12 n

)
, we run the following algorithm.

3. Compute an EDCS C := ParallelEDCS(G,∆, n) in parallel. Let βC , β−C be the parameters
of this EDCS (as specified in Claim 11.6 below).

4. Define Vhigh :=
{
v ∈ V | dC(v) ≥ β−C/2

}
be the set of “high” degree vertices in C.

5. Compute a matching Mhigh := RandomMatch(C, Vhigh, βC).

6. Define V − := V \
(
Vhigh ∪ V (Mhigh)

)
as the set of vertices that are neither high degree

in C nor matched by Mhigh. Let C− be the induced subgraph of C on vertices V − with
parallel edges removed.

7. Recursively compute (Vrec,Mrec) := ParallelAlgorithm(C−, βC).

8. Return Valg := Vhigh ∪ V (Mhigh) ∪ Vrec and Malg := Mhigh ∪Mrec.
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We start by proving some simple properties of ParallelAlgorithm. The following claim is a direct
corollary of Lemma 11.3 by setting s = n.

Claim 11.6. The subgraph C := ParallelEDCS(G,∆, n) computed in ParallelAlgorithm(G,∆) is an
EDCS(G, βC , β

−
C ) for parameters:

λC := o(1) βC :=
√

∆ ·O(log5 n) β−C := (1− λC) · βC

with probability at least 1− 1/n5.

Similarly, the following claim follows easily from Lemma 11.5.

Claim 11.7. Conditioned on C = EDCS(G, βC , β
−
C ), matchingMhigh = RandomMatch(C, Vhigh, βC)

has expected size E |Mhigh| = Ω(|Vhigh|).

Proof. With this conditioning, the maximum degree of G is at most βC , while the degree of vertices
Vhigh is at least β−C/2 ≥ βC/3. Hence, we can apply Lemma 11.5 and prove the statement.

Let T be the number of recursive calls made by ParallelAlgorithm(G,∆). We refer to any t ∈ [T ]
as a step of ParallelAlgorithm. We bound the total number of steps in ParallelAlgorithm as follows.

Claim 11.8. The total number of steps made by ParallelAlgorithm(G,∆) is T = O(log log ∆).

Proof. Define a function F (∆) denoting the number of recursive calls made by ParallelAlgorithm
with maximum degree ∆. As ParallelAlgorithm(G,∆) runs ParallelAlgorithm(C−, βC) for βC < ∆2/3,
we have, F (∆) ≤ F (∆2/3) + 1 for ∆ >

(
400 · log12 n

)
and F (∆) = 1 otherwise. It is now easy to

see that F (∆) = O(log log ∆), finalizing the proof.

In each step, ParallelAlgorithm runs the subroutines ParallelEDCS and RandomMatch once. We
say that a run of ParallelEDCS is valid in this step iff the high probability event in Claim 11.6
happens. Roughly speaking, this means that ParallelEDCS is valid when it returns the “correct”
output. Additionally, we say that a step of ParallelAlgorithm is valid if ParallelEDCS subroutine in
this step is valid. We define Evalid as the event that all T steps of ParallelAlgorithm(G,∆) are valid.
By Claims 11.6 each step of ParallelAlgorithm is valid with probability at least 1 − 1/n5. As there
are in total T = O(log log n) steps by Claim 11.8, Evalid happens with probability at least 1− 1/n4.

We are now ready to prove the correctness of ParallelAlgorithm.

Lemma 11.9. For any graph G(V,E), ParallelAlgorithm(G,n) with constant probability outputs a
matching Malg which is an O(1)-approximation to the maximum matching of G and a vertex cover
Valg which is an O(1)-approximation to the minimum vertex cover of G.

Proof. It is clear that the second parameter in ParallelAlgorithm(G,n) is an upper bound on the
maximum degree of G and hence G satisfies the requirement of ParallelAlgorithm. In the following,
we condition on the event Evalid which happens with high probability by the above discussion. As
such, we also have that any recursive call to ParallelAlgorithm(C−, βC) is valid (i.e., βC is indeed
an upper bound on degree of C−) simply because C− is a subgraph of an EDCS and hence its
maximum degree is bounded by βC .

We first argue that Valg andMalg are respectively a feasible vertex cover and a feasible matching
of G. The case for Malg is straightforward; the set of vertices matched by Mhigh is disjoint from
the vertices in Mrec as all vertices matched by Mhigh are removed in C−, and hence (by induction)
Malg = Mhigh ∪ Mrec is a valid matching in G. Now consider the set of vertices Valg. By
conditioning on the event Evalid, C is indeed an EDCS(G, βC , β

−
C ). Hence, by Property (P2) of

EDCS C, any edge e ∈ G \ C has at least one neighbor in Vhigh and is thus covered by Vhigh.
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Additionally, as we pick V (Mhigh) in the vertex cover, any edge incident on these vertices are also
covered. This implies that Vhigh ∪ V (Mhigh) plus any vertex cover of the remaining graph C− is
a feasible vertex cover of G. As Vrec is a feasible vertex cover of C− by induction, we obtain that
Valg is also a feasible vertex cover of G (the analysis for the base case in step 1 where a maximal
matching is compute locally is trivial).

We now show that sizes ofMalg and Valg are within a constant factor of each other with constant
probability. By Proposition 7.2 this implies that both are an O(1)-approximation to their respective
problem. At each step, the set of vertices added to the Valg are of size |V (Mhigh)|+|Vhigh| ≤ 3 |Vhigh|
(as Mhigh is incident on Vhigh). The set of edges added to matching Malg are of size Mhigh
which is in expectation equal to Θ(|Vhigh|) by Claim 11.7. As such, by induction and linearity of
expectation, this implies that E |Malg| = Θ(|Valg|) (the base case is again trivial). To conclude, we
can apply a Markov bound (on size of |Valg| − |Malg|) and obtain that with constant probability
|Malg| = Θ(|Valg|), which finalizes the proof.

We note that in Lemma 11.9, we only achieved a constant factor probability of success for
ParallelAlgorithm. We can however run this algorithm in parallel O(log n) times and pick the best
solution to achieve a high probability of success while still having Õ(n) memory per machine and
O(log log n) rounds.

11.4 MPC Implementation of the Parallel Algorithm
In this section, we briefly specify the details in implementing ParallelAlgorithm in the MPC model on
machines of memory Õ(n). In Section 11.5, we show how to extend this to the case when memory
per machine is a given parameter s. Throughout this section, we assume that the event Evalid defined
in the previous section holds and hence we are implicitly conditioning on this (high probability)
event.

Our implementation is based on using by now standard tools in the MPC model for sorting and
search in parallel introduced originally by [42] as specified in [29]. On machines with memory nΩ(1),
the sort operation in [42] allows us to sort a set of key-value pairs of size polylog(n) in O(1) MPC
rounds. We can also do a parallel search: given a set A of key-value pairs and a set of queries each
containing a key of an element in A, we can annotate each query with the corresponding key-value
pair from A, again in O(1) MPC rounds.

We follow the approach of [29] by using these operations to broadcast information from vertices
to their incident edges. We build a collection of key-value pairs, where each key is a vertex and the
value is the corresponding information. Then, each edge (u, v) may issue two queries to obtain the
information associated with u and v. For more details, we refer the reader to Section 6 in [29]. The
following lemma states the main properties of our implementation.

Lemma 11.10. For a given graph G(V,E), one can implement the following algorithms in the MPC
model with at most O(n) machines with memory Õ(n) with probability 1− 1/n4:

1. Each call to ParallelEDCS in ParallelAlgorithm(G,n) in O(1) MPC rounds.

2. Each call to RandomMatch in ParallelAlgorithm(G,n) in O(1) MPC rounds.

3. ParallelAlgorithm(G,n) in O(log log n) MPC rounds.

We prove each part of this lemma separately.

Implementation of ParallelEDCS. To perform the vertex sampling approach in ParallelEDCS, we
need to annotate each edge with the subgraph(s) it is assigned to. To do this, each vertex v in the
current graph only needs to specify which subgraphs it resides on and broadcast this to its adjacent
edges. Recall that unlike in [29], in our way of vertex sampling, each vertex can resides in multiple
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subgraphs (up to Õ(
√
n) ones). Broadcasting this amount of information directly to adjacent edges

of each vertex is not possible within the memory restrictions of the MPC model. However, recall
that we are using an O(log n)-wise independent hash function for determining the subgraphs each
vertex v is going to reside on. Hence, the vertex v only needs to broadcast this hash function to
its adjacent edges which requires polylog(n) bits for representation (see, e.g. [64]) and thus can be
done in O(1) MPC rounds on machines of memory nΩ(1).

We then send all edges assigned to one subgraph to a dedicated machine. By Claim 11.4, the
number of edges assigned to each machine is at most Õ(n) with high probability and hence it can fit
the memory of the machine. We can then locally compute an EDCS of this subgraph and annotate
the edges in this EDCS as the edges of the final multigraph C. All this can be easily done in O(1)
MPC rounds, hence finalizing this part of the proof.

Implementation of RandomMatch. Each vertex in S′ simply needs to annotate one of its edges
uniformly at random, and each annotated edge only needs to “mark” its other endpoint in G \ S′.
Any vertex in G \ S′ which is marked exactly once then inform the edge that marked it to join the
matching M . This part can again be done in only O(1) rounds on machines with memory nΩ(1).

Implementation of ParallelAlgorithm. We can now combine the results in the previous two parts
to show how to implement ParallelAlgorithm in the MPC model. Consider a step of ParallelAlgorithm.
We saw that ParallelEDCS and RandomMatch can both be implemented in O(1) MPC models. In
particular, all edges in subgraph C computed by ParallelEDCS are now annotated and hence we can
ignore all remaining edges. We can also compute the degree of each vertex in this subgraph in O(1)
rounds using a simple sort and search technique (see Lemma 6.1 in [29]). We can hence compute
the set of vertices Vhigh and pass it to RandomMatch as the set S. Finally, we can mark vertices in
Vhigh ∪ V (Mhigh) and remove them from the graph (by broadcasting this information to all their
neighbors). After this, we know which vertices belong to C− for the next step and which edges are
still active. We can hence recursively solve the problem on the graph C− in the next steps. As each
step requires O(1) MPC rounds and there are O(log log n) steps in total by Claim 11.8, this results
in an MPC algorithm with O(log log n) rounds.

11.4.1 Optimizing the Number of Machines

We conclude this section by making a remark about optimizing the number of machines (in addition
to their memory) in our results as well.

As it is, the total number of machines needed to implement ParallelAlgorithm in the MPC model
is Õ(n). This means that the total memory across all machines is Õ(n2), which is proportional to
the input size (up to polylog(n) factors) whenever the input graph is completely dense, i.e., has
O(n2) edges. However for sparser graphs with n1+Ω(1), this can be larger than the input size by a
factor of n1−Ω(1). This is consistent with some definitions of MapReduce-style computation such
as [53, 56] but not with the strictest definitions in [10, 19], which require that the total memory of
the system for a graph with m edges to be only Õ(m), i.e., proportional to the input size.

Nevertheless, a straightforward modification of our algorithm can reduce the number of machines
down to Õ(m/n) which ensures that the total memory used by our algorithm is Õ(m) which adheres
to the strictest restrictions of the MPC model. The only change we need to do is to work with the
average degree of the graph in ParallelAlgorithm as opposed to its maximum degree. Concretely,
in each call to ParallelAlgorithm(G,∆), instead of computing ParallelEDCS(G,∆, n), we compute
ParallelEDCS(G, ∆̃, n), where ∆̃ := m/n denotes the average degree of the graph G. It is easy to see
that in this case, we still only need Õ(n) memory per machine (essentially the same argument in
Claim 11.4 proves this), but now the total number of machines needed is only Õ(m/n) and hence we
only need Õ(m) memory in total. It is easy to verify that the arguments in the proof of correctness
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of ParallelEDCS can be immediately applied to this version; we omit the details.

11.5 Extension to Smaller Memory Requirement and Proof of Theorem 11
As was shown by Lemma 11.10, ParallelAlgorithm can be implemented in the MPC model with
machines of memory Õ(n) and O(log log n) MPC rounds. Combining this with Lemma 11.9 on the
correctness of ParallelAlgorithm, we immediately obtain Theorem 11 for the case of s = Õ(n), i.e., an
MPC algorithm with O(1) approximation to both matching and vertex cover in O(log log n) rounds
with Õ(n) memory per machine.

We now show how to extend our algorithm to the case when memory per machine is s = nΩ(1).
For simplicity, we assume the memory per each machine is Õ(s) as opposed to O(s); rescaling the
parameter s with a polylog(n) factor implies the final result. Recall that there were only two places
in ParallelAlgorithm that we needed Õ(n) memory per machine: in subroutine ParallelEDCS and in
step 1 of the algorithm, i.e., the base case of recursion. Consequently, we only need to make the
following two changes to ParallelAlgorithm(G,∆):

1. Firstly, in ParallelAlgorithm(G,∆), we now run the subroutine ParallelEDCS with memory per
machine equal to O(s · polylog(n)), i.e., we run ParallelEDCS(G,∆, s).

2. Second, we change the base case of the algorithm. Whenever ∆ <
(
n
s

)
·
(
400 · log12 (n)

)
,

instead of sending all edges to a single machine and solve the problem locally, we simply
use any standard O(log ∆)-round MPC algorithm for O(1)-approximation to matching and
vertex cover that works on machines with memory nΩ(1) (for example by directly simulating
the distributed peeling algorithm of [68] (see also [69]). For more details, see [29] (Lemma 6.1).

Previously with machines of memory Õ(n), the maximum degree of underlying graph in each
step of ParallelAlgorithm was (see Claim 11.6):

∆1 := n, ∆2 :=
√
n · polylog(n), . . . ∆i := n1/2i · polylog(n), . . . ∆T := polylog(n),

where T = O(log log n) denotes the number of steps in ParallelAlgorithm. By switching to machines
of memory Õ(s), we instead have,

∆1 := n, ∆2 :=
n

s1/2
· polylog(n), . . . ∆i :=

n

s1−1/2i−1 · polylog(n), . . . ∆T :=
(n
s

)
· polylog(n),

before we reach the stopping condition of ParallelAlgorithm (this follows directly from Lemma 11.3
exactly as in Claim 11.6). After this step, we simply compute an O(1)-approximate matching and
vertex cover directly in the remaining graph.

The analysis of the correctness of this algorithm is exactly as before. It is also straightfor-
ward to verify that this algorithm now only needs machines of memory O(s · log2(n)) by choice of
ParallelEDCS. Finally, the number of rounds needed by this algorithm is O(log log n) (for reducing
the maximum degree in the graph to ∆T ) plus O(log ∆T ) = O(log

(
n
s

)
+ log log n) (for running the

distributed matching and vertex cover algorithm directly when maximum degree is at most ∆T ).
This concludes the proof of Theorem 11 for all range of parameter s = nΩ(1).

11.6 Further Improvements
In the remainder of this section, we show that using standard techniques, one can improve the
approximation ratio of our matching algorithm significantly. In particular,

Corollary 12. There exists an MPC algorithm that given a graph G and ε ∈ (0, 1), with high
probability computes a (2 + ε)-approximation to maximum matching of G in O(log (1/ε) · log log n)
MPC rounds using only O(n/polylog(n)) memory per machine.
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Corollary 13. There exists an MPC algorithm that given a graph G and ε ∈ (0, 1), with high
probability computes a (1+ε)-approximation to the maximum matching of G in (1/ε)O(1/ε)·(log log n)
MPC rounds using only O(n/polylog(n)) memory per machine.

We note that above corollaries hold for all range of per machine memory s = nΩ(1) similar to The-
orem 11; however, for simplicity, we only consider the most interesting case of s = O(n/polylog(n)).
We prove each of the above corollaries in the next two sections.

11.6.1 Proof of Corollary 12

The idea is to simply run our MPC algorithm in Theorem 11, to compute a matchingMalg, remove
all vertices matched by Malg from the graph G, and repeat. Clearly, the set of all matchings
computed like this is itself a matching of G. In the following, we show that only after O(log 1/ε)
repetition of this procedure, one obtains a (2 + ε)-approximation to the maximum matching of G.

Let α = O(1) be the approximation ratio of the algorithm in Theorem 11. Suppose we repeat
the above process for T := (α · log (1/ε)) steps. For any t ∈ [T ], let Mt be the matching computed
so far, i.e., the union of the all the matchings in the first t applications of our α-approximation
algorithm. Also let Gt+1 := G \ V (Mt), i.e., the graph remained after removing vertices matched
by Mt. Note that Mt+1 is an α-approximation to the maximum matching of Gt+1. Moreover,
MM(Gt+1) ≥ MM(G)− 2 |Mt| as each edge in Mt can only match (and hence remove) two vertices
of any maximum matching of G. This implies that |Mt+1| ≥ |Mt| + 1

α · (MM(G)− 2 |Mt|) for all
t ∈ [T ]. We now have,

MM(G)− 2 |MT | ≤
(

1− 2

α

)
·MM(G)− 2 ·

(
1− 2

α

)
· |MT−1|

=

(
1− 2

α

)
· (MM(G)− 2 · |MT−1|)

≤
(

1− 2

α

)2

(MM(G)− 2 · |MT−2|)

(by applying the second equation to MT−1)

≤
(

1− 2

α

)T
·MM(G) (by recursively applying the previous equation)

≤ exp

(
− 2

α
· α · log (1/ε)

)
·MM(G) ≤ ε ·MM(G).

Hence, after T = O(log 1/ε) steps, the matching computed by the above algorithm is of size
(2 + ε) ·MM(G). It is immediate to verify that the new algorithm can be implemented in the MPC
model with machines of memory O(n/polylog(n)) and O(log (1/ε) · log logn) MPC rounds. Note
that as the probability of error in the algorithm in Theorem 11 is at most 1/n4, by a union bound,
the new algorithm also outputs the correct answer with probability at least 1− 1/n3.

11.6.2 Proof of Corollary 13

Corollary 13 can be proven using Theorem 11 plus a simple adaption of the multi-pass streaming
algorithm of McGregor [58] for maximum matching to the MPC model. The high level approach
in [58] is to reduce the problem of finding a (1 + ε)-approximate maximum matching in G to many
instances of finding a maximal matching in multiple adaptively chosen subgraphs of G. It was then
shown that there exists a single pass streaming algorithm that can both determine the appropriate
subgraph of G needed in each step of this reduction and compute a maximal matching of this
subgraph. Hence, after repeating this streaming algorithm in multiple passes over the stream, one
can fully implement the reduction and obtain a (1 + ε)-approximation to the maximum matching.
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We show that essentially the same approach can also be used in the MPC model. The main dif-
ference is to switch from computing a maximal matching to finding an O(1)-approximate maximum
matching using our Theorem 11. In the following, we briefly describe the approach in [58] and point
out the modifications needed to make it work in Corollary 13. The purpose of this section is only
to convince the reader that the reduction [58] can be seamlessly implemented in the MPC model
and hence we do not delve into the full details of the algorithm and analysis and instead refer the
reader to [58] for more details and formal proofs.

The Streaming Algorithm of [58]. The idea behind the algorithm is to start with some maximal
matchingM (which is easy to compute in one pass over the stream) and then augment this matching
further over multiple phases by finding a large set of vertex disjoint augmenting paths of length
O(1/ε) in a layered graph created from G and the current matching M . We first introduce the
concept of the layered graph that is used to reduce the task of finding augmenting paths to multiple
instances of approximate matching. Given a graph G, a matching M , and an odd integer k (which
is the target length of the augmenting paths to be found), we create a graph L(G,M, k) using the
following randomized procedure:

1. The vertices in L are the same as G and are partitioned into k + 1 subsets L1, . . . , Lk+1

called layers. The layer of each vertex v is determined as follows:

(a) For any vertex u left unmatched by M , u is assigned to either L1 or Lk+1 chosen
uniformly at random.

(b) For any matched edge (u, v) ∈ M , the vertex u is assigned to a uniformly at random
chosen even layer L2, L4, . . . , Lk−1 and v is assigned to the subsequent layer.

2. For any edge (u, v) ∈ E \M , if u belongs to an odd layer and v belongs to the next (even)
layer then (u, v) is added to L as well.

3. For any edge (u, v) ∈M , (u, v) is added to L as well.

One could easily verify that the edges in L are only between two consecutive layers and for
any edge in L there is a unique edge in G. The main property of the above construction is that a
collection of vertex disjoint paths between vertices in L1 and Lk+1 corresponds to a set of vertex
disjoint augmenting paths of length k for M in G. It is also relatively easy to prove that as
long as |M | < (1 − ε) ·MM(G), then, there exists some k = O(1/ε), for which the corresponding
graph L(G,M, k) has at least MM(G) · εO(1/ε) vertex disjoint paths between L1 and Lk+1 with high
probability (see Theorem 1 in [58]).

We now describe how to find a large fraction of these augmenting paths in L (in each phase)
by finding different maximal matchings between consecutive layers of L. We first compute an
approximate matching M1,2 between L1 and L2. Let L′3 ⊆ L3 be the set of vertices that are
neighbor to matched vertices of M1,2 (in L2). We then, compute a matching M3,4 between L′3 and
L4 and we continue like this. One can see this approach as growing vertex disjoint (augmenting)
paths from layer L1 to (eventually) layer Lk+1. If at some point, size of the matching between L′i
and Li+1 (for some odd i) goes below a certain threshold, we remove all vertices in L′i from the
graph (as they are mostly “dead ends”) and backtrack (similar to a DFS procedure). By choosing
a relatively large threshold, one can ensure that the number of backtracks is bounded by some
function of (1/ε) only and hence is not too large. At the same time, we like the threshold to be
small enough also so that not many actual vertex disjoint paths are marked (incorrectly) as dead
ends. Once we complete some paths from L1 to Lk+1 we remove these paths (to be augmented
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later) and recurse on the remaining graph until no vertices are left. We again emphasize that at
each step of this procedure, we simply find a maximal matching between some set of nodes in L and
the above algorithm determines which sets of vertices to choose for finding the next approximate
matching. We refer the reader to Section 2.3 (in particular Fig 2) of [58] for a formal definition and
a pseudo-code of this algorithm.

We now argue that essentially the same algorithm can also be implemented in the MPC model
using our Theorem 11 (instead of picking maximal matchings).

From Maximal to O(1)-Approximate Matching. We point out that the algorithm of [58]
uses a maximal matching in its construction as it is easy to compute in one pass over a stream and
results in a 2-approximate matching. However, we emphasize that the analysis in [58] in no way
uses the “maximality” property of this matching and only relies on its approximation ratio. We do
not know how to compute a maximal matching in the MPC model efficiently, however, we can use
Theorem 11 to compute an O(1)-approximate matching. By a simple adjustment of the thresholds
used in the above algorithm, we can use any O(1)-approximation algorithm to maximum matching
in place of a maximal matching algorithm, while blowing up the number of calls to the matching
subroutine between two layers by a constant factor in total.

From Streaming to MPC Model. It is easy to see that the construction of the layered graph
as well as the choices to which subgraph to compute the next matching on in the above algorithm
can be easily performed in constant number of rounds in the MPC model. As argued above, in place
of the maximal matching algorithm in reduction of [58], we use our algorithm in Theorem 11 which
requires O(log log n) MPC rounds (compared to one pass in [58]). As a result, number of rounds
in our algorithm is Oε(log log n) larger than the passes in the streaming algorithm of [58]. Overall,
the new algorithm requires (1/ε)O(1/ε) ·O(log log n) MPC rounds and O(n/polylog(n)) memory per
machine.
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A Some Applications of Randomized Composable Coresets
In the following, we provide more details on the applications of randomized coresets to different
computational models and in particular prove Proposition 6.1.

MPC Algorithms. The MPC model is defined in Section 7.1. We can use any α-approximation
randomized coreset ALG of size s for a problem P to obtain a parallel algorithm in only two MPC
rounds. Suppose G(V,E) is the input graph and let k :=

√
m/s. The algorithm is as follows:

1. In the first round, create a random k-partition G(1), . . . , G(k) and allocate each graph G(i)

to the machine i ∈ [k].

2. Each machine i ∈ [k] creates a randomized composable coreset Ci = ALG(G(i)).

3. In the second round, collect the union of all coresets to create H := H(V,C1, . . . , Ck) on
one machine and solve P in H using any offline algorithm.

It is straightforward to verify that this MPC algorithm requires O(k) = O(
√
m/s) machines

each with O(
√
ms + n) memory. Moreover, by Definition 3, the output of this algorithm is an

α-approximation to P (G) with high probability.

Streaming Algorithms. In the streaming model, the edges of the input graph are presented to
the algorithm one by one in a sequence and the algorithm is allowed to make a single pass (or a few
passes) over this sequence.

Similar to the case for MPC algorithms, any α-approximation randomized coreset ALG of size
s for a problem P also imply a single-pass streaming algorithm for P in random arrival streams.
Suppose G(V,E) is the input graph which its edges are arriving in a random order in a stream of
length m. The algorithms is as follows.

1. Randomly partition the edges in the stream into k :=
√
m/s consecutive pieces such that

the distribution of the graphs G(1), . . . , G(k) created by edges in each piece is a random
k-partition of G (using the randomness in the arrival of the stream).

2. Let H be the empty graph on vertices V . For i = 1 to k:

(a) Read the graph G(i) completely and store it in the memory temporarily.
(b) Compute a randomized composable coreset Ci = ALG(G(i)).
(c) Update H by adding all edges in Ci to it and discard all edges in G(i) to reuse the

memory in the next iteration.

3. At the end of stream, solve P in H using any offline algorithm.

It is again easy to see that the total memory required by this algorithm is O(m/k) = O(
√
ms)

(to store each graph G(i) in the memory temporarily) plus O(k · s) = O(
√
ms) (to store all coresets

during the stream). The output of this algorithm is then an α-approximation to P (G) with high
probability by Definition 3.

Simultaneous Communication Model. In this model, the input graph is edge partitioned
across k machines/players and the goal is to solve the problem on the union of these graphs. In
order to this, the players simultaneously each send a single message to an additional party called
the coordinator who then outputs the solution.

Any α-approximation randomized coreset ALG of size s for a problem P immediately implies a
simultaneous protocol for P on randomly partitioned inputs. Suppose G(V,E) is the input graph
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which its edges are partitioned across k parties randomly. Each party only needs to compute a
coreset of its input graph and communicate it with the coordinator. The communication by each
party then would be O(s) and the coordinator can recover an α-approximation to P with high
probability by Definition 3.

Remark A.1. In the above algorithms, we neglected the computation time needed for solving P on
the union of the coresets. This is consistent with the definitions of the models considered here as they
all allow unbounded computation time to the algorithm. However, if one insists on having efficient
time algorithms (e.g., polynomial time) then the approximation ratio of the resulting algorithm would
be ρ · α where ρ is the approximation guarantee of any offline algorithm we use for solving P in the
end (in many scenarios however this naive blow-up in the approximation ratio can be avoided by
additional care, although not in a black-box way anymore).

B Missing Details from Section 7
B.1 Useful Concentration of Measure Inequalities
Azuma’s inequality proves a concentration bound for martingales.

Proposition B.1 (Azuma’s inequality). Let {Xi}ni=0 be a martingale (with respect to some random
variables {Yi}ni=0). Suppose there exists a sequence of integers {ci}ni=1 such that |Xi −Xi−1| ≤ ci;
then,

Pr
(
|Xn −X0| ≥ λ

)
≤ 2 · exp

(
− λ2∑n

i=1 c
2
i

)
.

We also use the following standard variant of the Chernoff bound as well as its generalization
for variables with bounded independence.

Proposition B.2 (Chernoff bound). Let X1, . . . , Xn be independent random variables taking value
in [0, 1] and X :=

∑n
i=1Xi. Then, for any δ ∈ (0, 1)

Pr
(
|X − E [X]| ≥ δ · E [X]

)
≤ 2 · exp

(
−δ

2 · E [X]

3

)
.

Proposition B.3 (Chernoff bound with bounded independence [71]). Let X1, . . . , Xn be κ-wise
independent variables taking value in [0, 1] and X :=

∑n
i=1Xi. For any δ ∈ (0, 1), if κ ≤ δ2·E [X] /2,

then,

Pr
(
|X − E [X]| ≥ δ · E [X]

)
≤ 2 · exp

(
−κ

2

)
.

B.2 Proof of Lemma 7.4
Lemma. Any graph G contains an EDCS(G, β, β−) for any parameters β > β−.

Proof. Consider the following simple procedure for creating an EDCS H of a given graph G:

While H is not an EDCS(G, β, β−) of G:

(a) Find an edge e which violates one of the properties of EDCS.
(b) Fix the edge e, i.e., remove it from H if it was violating Property (P1) and add it to

H if it was violating Property (P2).

The output of the above procedure is clearly an EDCS of graph G. However, a-priori it is not
clear that this procedure ever terminates as fixing one edge e can result in many edges violating the
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EDCS properties, potentially undoing the previous changes. In the following, we use a potential
function argument to show that this procedure always terminates after a finite number of steps,
hence implying that an EDCS(G, β, β − 1) always exists.

We define the following potential function Φ:

Φ := (β − 1/2) ·
∑
u∈V

dH(u)−
∑

(u,v)∈H

dH(u) + dH(v).

We argue that in any step of the procedure above, the value of Φ increases by at least 1. Since the
maximum value of Φ is at most O(n · β2), this immediately implies that this procedure terminates
in O(n · β2) steps.

Define Φ1 := (β − 1/2) ·
∑

u∈V dH(u) and Φ2 := −
∑

(u,v)∈H dH(u)+dH(v) (note the minus sign)
and hence Φ = Φ1 + Φ2. Let (u, v) be the edge we choose to fix at this step, H be the subgraph
before fixing the edge (u, v), and H ′ be the resulting subgraph.

Suppose first that the edge (u, v) was violating Property (P1) of EDCS. As the only change is in
the degrees of vertices u and v, Φ1 decreases by (2β−1). On the other hand, dH(u)+dH(v) ≥ β+1
originally (as (u, v) was violating Property (P1) of EDCS) and hence after removing (u, v) Φ2

increases by β + 1. Additionally, for each neighbor w of u and v in H ′, after removing the edge
(u, v), dH′(w) decreases by one. As there are at least dH′(u) + dH′(v) = dH(u) + dH(v)− 2 ≥ β − 1
choices for w, this means that in total, Φ2 increases by at least (β + 1) + (β − 1) = 2β. As a result,
in this case Φ increases by at least 1 after fixing the edge (u, v).

Now suppose that the edge (u, v) was violating Property (P2) of EDCS instead. In this case,
degree of vertices u and v both increase by one, hence Φ1 increases by 2β − 1. Additionally,
not that since edge (u, v) was violating Property (P2) we have dH(u) + dH(v) ≤ β− − 1, so the
addition of edge (u, v) decreases Φ2 by at most dH′(u) + dH′(v) = dH(u) + dH(v) + 2 ≤ β− + 1.
Moreover, for each neighbor w of u and v, after adding the edge (u, v), dH′(w) increases by one and
since there are at most dH(u) + dH(v) ≤ β− − 1 choices for w, Φ2 decreases in total by at most
(β−+1)+(β−−1) = 2β−. Since β− ≤ β−1, we have that Φ increases by at least (2β−1)−(2β−) ≥ 1
after fixing the edge (u, v), finalizing the proof.

We remark that this proof also implies a natural polynomial time algorithm for computing any
EDCS of a given graph G.
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