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IMPROVED APPROXIMATION ALGORITHMS FOR (BUDGETED)
NODE-WEIGHTED STEINER PROBLEMS∗
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VAHID LIAGHAT§

Abstract. Moss and Rabani study constrained node-weighted Steiner tree problems with two
independent weight values associated with each node, namely, cost and prize (or penalty). They give
an O(logn)-approximation algorithm for the node-weighted prize-collecting Steiner tree problem
(PCST)—where the goal is to minimize the cost of a tree plus the penalty of vertices not covered
by the tree. They use the algorithm for PCST to obtain a bicriteria (2, O(logn))-approximation
algorithm for the budgeted node-weighted Steiner tree problem—where the goal is to maximize the
prize of a tree with a given budget for its cost. Their solution may cost up to twice the budget, but
collects a factor Ω( 1

logn
) of the optimal prize. We improve these results from at least two aspects.

Our first main result is a primal-dual O(log h)-approximation algorithm for a more general problem,
node-weighted prize-collecting Steiner forest (PCSF), where we have h demands each requesting the
connectivity of a pair of vertices. Our algorithm can be seen as a greedy algorithm which reduces
the number of demands by choosing a structure with minimum cost-to-reduction ratio. This natural
style of argument leads to a much simpler algorithm than that of Moss and Rabani for PCST. Our
second main contribution is for the budgeted node-weighted Steiner tree problem, which is also an
improvement to the work of Moss and Rabani. In the unrooted case, we improve upon an existing
O(log2 n)-approximation by Guha et al., and present an O(logn)-approximation algorithm without
any budget violation. For the rooted case, where a specified vertex has to appear in the solution
tree, we improve the bicriteria result of Moss and Rabani to the bicriteria approximation ratio of
(1 + ε, O(logn)/ε2) for any positive (possibly subconstant) ε. That is, for any permissible budget
violation 1 + ε, we present an algorithm achieving a trade off in the guarantee for the prize. Indeed,
we show that this is almost tight for the natural linear-programming relaxation used by us as well
as in the previous works.
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1. Introduction. In the rapidly evolving world of telecommunications and inter-
net, design of fast and efficient networks is of utmost importance. It is not surprising,
therefore, that the field of network design has continued to be an active area of re-
search since its inception several decades ago. These problems have applications not
only in designing computer and telecommunications networks, but are also essential
for other areas such as VLSI design and computational geometry [3]. Besides their
appeals in these applications, basic network design problems (such as a Steiner tree,
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the traveling salesman problem, and their variants) have been the testbed for new
ideas and have been instrumental in the development of new techniques in the field
of approximation algorithms.

In parallel to the study by Moss and Rabani [13], this work focuses on graph-
theoretic problems in which two (independent) nonnegative weight functions are as-
sociated with the vertices, namely, cost c(v) and prize (or penalty) π(v) for each vertex
v of the given graph G(V,E). The goal is to find a connected subgraph H of G that
optimizes a certain objective. We now summarize the four different problems, already
introduced in the literature. In the net worth (NW) problem, the goal is to maximize
the prize of H minus its cost.1 We prove in section 4 that this natural problem does
not admit any finite approximation algorithm. A similar, yet better-known objective
is that of minimizing the cost of the subgraph plus the penalty of nodes outside of
it (which is called the prize-collecting Steiner tree (PCST) in the literature). Two
other problems arise if one restricts the range of either cost or prize in the desired
solution. In particular, the quota problem tries to find the minimum-cost tree among
those with a total prize surpassing a given value, whereas the budgeted problem deals
with maximizing the prize with a given maximum budget for the cost. The rooted
variants ask, in addition, that a certain root vertex be included in the solution. In the
k-MST problem, the goal is to find a minimum-cost tree with at least k vertices. In
the k-Steiner tree problem, given a set of terminals, the goal is to find a minimum-cost
tree spanning at least k terminals. We show the following reductions missing from
the literature.

Theorem 1. Let α, 0 < α < 1, be a constant. The following statements are
equivalent (both for edge-weighted and node-weighted variants):

(i) There is an α-approximation algorithm for the rooted k-MST problem.
(ii) There is an α-approximation algorithm for the unrooted k-MST problem.
(iii) There is an α-approximation algorithm for the k-Steiner tree problem.

Proof. Here we present the equivalence of (ii) and (iii) (see section 5 for that
of (i) and (ii)). We note that one way is clear by definition. To prove that (ii)
implies (iii), we give a cost-preserving reduction from k-Steiner tree to k-MST. Let
< G = (V,E), T, k > be an instance of k-Steiner tree with the set of terminals T ⊆ V .
Let n = |V |. For every terminal vt ∈ T , add n vertices at distance zero of vt. Let
k′ = kn+k and consider the solution to k′-MST on the new graph. Any subtree with
at most k− 1 terminals has at most (k− 1)n+ n− 1 = kn− 1 vertices. Therefore an
optimal solution covers at least k terminals. Hence the reduction preserves the cost
of the optimal solution.

These results improve the approximation ratio for k-Steiner tree. Previously, a 4-
approximation algorithm was proved by [14] and a 5-approximation algorithm was due
to [4] who had also conjectured the presence of a (2+ε)-approximation algorithm. The
equivalence of k-Steiner tree and k-MST combined with the 2-approximation result
of Garg [7] leads to a 2-approximation algorithm for k-Steiner tree.

A more tractable version of the prize-collecting variant is the edge-weighted case
in which the costs (but not the prizes) are associated with edges rather than nodes.
The best known approximation ratio for the edge-weighted Steiner tree problem is 1.39
due to Erlebach, Grant, and Kammer [5]. For the earlier work on an edge-weighted
variant we refer the reader to the references of [5]. In this paper, unless otherwise
specified, all our graphs are node weighted and undirected.

1The prize or cost of a subgraph is defined as the total prize or cost of its vertices, respectively.
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1.1. Contributions and techniques.
Approximation algorithm for prize collecting Steiner forest (PCSF). Klein and

Ravi [11] were the first to give an O(log h)-approximation algorithm for the Steiner
forest (SF) problem. Later, Guha et al. [9] improved the analysis of [11] by showing
that the approximation ratio of the algorithm of [11] is w.r.t. the fractional optimal
solution for the Steiner tree (ST) problem. The ST problem is a special case of
SF where all demands share an endpoint. In an independent work, Chekuri, Ene,
and Vakilian [2] give an algorithm with an approximation ratio of O(log n) w.r.t.
the fractional solution for SF and higher connectivity problems. This immediately
provides a reduction from PCSF to the SF problem: one can fractionally solve the
linear program (LP) for PCSF and pay the penalty of every demand for which the
fractional solution pays at least half its penalty. Hence, the remaining demands can be
(fractionally) satisfied by paying at most twice the optimal solution. Therefore, one
can make a new instance of SF with only the remaining demands and get a solution
within an O(log n) factor of the optimal solution using the SF algorithm.

We start off by presenting a simple primal-dual O(log h)-approximation algo-
rithm for the node-weighted PCSF problem, where h is the number of connectivity
demands—see Theorem 2. Compared to the PCST algorithm given by Moss and Ra-
bani [13] and Könemann, Sadeghian, and Sanita [12], our algorithm for PCSF solves
a more general problem and it has a simpler analysis. A reader familiar with the
moat-growing framework2 may recall that algorithms in this framework (e.g., that of
Moss and Rabani [13] or Könemann, Sadeghian, and Sanita [12]) consist of a growth
phase and a pruning phase. A moat is a set of dual variables corresponding to a
laminar set of vertices containing terminals—vertices with a positive penalty. The
algorithm grows the moats by increasing the dual variables and adding other vertices
gradually to guarantee feasibility. In the edge-weighted ST problem, when two moats
collide on an edge, the algorithm buys the path connecting the moats and merges
the moats. Roughly speaking, the algorithm stops growing a moat when either it
reaches the root, or its total growth reaches the total prize of terminals inside it. This
process is not quite enough to obtain a good approximation ratio. At the end of the
algorithm we may have paid too much for connecting unnecessary terminals. Thus
as a final step one needs to prune the solution in a certain way to obtain the tight
approximation ratio of 2− 1

n .
In the node-weighted problem, one obstacle is that (polynomially) many moats

may collide on a vertex. Handling the proper growth of the moats and the process
to merge them proves to be very sophisticated. This may have been the reason
that for more than a decade no one noticed the flaw in the algorithm of Moss and
Rabani [13].3 Indeed the recently proposed algorithm by Könemann, Sadeghian, and
Sanita [12] is even more sophisticated on both phases; their algorithm is not monotone
anymore. For the growth phase, their algorithm only connects an active moat (i.e.,
one whose growth has not reached its penalty), to an inactive moat, only if the total
dual of participating components is large enough. For the pruning phase, they use a
potential function argument to choose the final subtree.

In our algorithm, not only do we completely discard the pruning phase, but we also
never merge the moats (thus intuitively, a moat forms a disk centered at a terminal).
In fact, our algorithm can be thought of as a simple greedy algorithm. Our algorithm

2Introduced by Agrawal, Klein, and Ravi [1] and Goemans and Williamson [8].
3In private correspondence the authors of the original work have admitted that their algorithm

is flawed and that it cannot be fixed easily.
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runs in iterations, and in each iteration several disks are grown simultaneously on
different endpoints of the demands. The growth stops at the largest possible radius
where there are no “overlaps” and no disk has run out of “penalty.” If the disks
corresponding to several endpoints hit each other, a set of paths connecting them is
added to the solution and all but one representative endpoint are removed for the
next iteration. However, if a disk is running out of penalty, the terminal at its center
is removed for the next iteration. The cost incurred at each iteration is a fraction of
the optimal solution (OPT), proportional to the fraction of endpoints removed, hence
the logarithmic term in the guarantee.

Although our primal-dual approach is different from the approach known for
SF [11, 9], we indeed use the same style of argument to analyze our algorithm. The
crux of these algorithms is to reduce the number of components of the solution by
using a structure with minimum cost-to-reduction ratio. Besides the simplicity of
this trend, it is important that by avoiding the pruning phase, these algorithms
may lead to progress in related settings such as streaming and online settings. The
moat-growing approach of Konemann, Sadeghian, and Sanita [12], however, allows a
stronger Lagrangian-preserving guarantee4 for PCST. This property is shown to be
quite important for solving various problems such as k-MST and k-Steiner tree (see,
e.g., [4, 10]).

Approximation algorithms for the budgeted problem. Using their algorithm for
PCST, Moss and Rabani developed a bicriteria5 approximation algorithm for the
budgeted problem, one that achieves an approximation factor O(log n) on prize while
violating the budget constraint by no more than factor of two [13]. We present
in Theorem 3 a modified pruning procedure that improves the bicriteria bound to
(1 + ε, O(log n)/ε2); in other words, if the algorithm is allowed to violate the budget
constraint by only a factor 1 + ε (for any positive ε), the approximation guarantee
on the prize will be O(log n)/ε2. In fact, we also show using the natural linear-
programming relaxation (used in [13] as well), that it is not possible to improve these
bounds significantly—see section 6. In particular, there are instances for which the
fractional solution is OPT/ε, however, no solution of cost at most 1 + ε times the
budget has prize more than O(OPT). Our integrality-gap construction fails if the
instance is not rooted. Indeed, in that case, we show how to obtain an O(log n)-
approximation algorithm with no budget violations—see Theorem 4. This improves
the O(log2 n)-approximation algorithm of Guha et al. [9].6 To get over the integrality
gap of the LP formulation, we prove several structural properties for near-optimal
solutions. By restricting the solution to one with these properties, we use a bicri-
teria approximation algorithm as a black box to find a near-optimal solution. Fi-
nally we use a generalization of the trimming method of [9] to avoid violating the
budget.

1.2. Organization. Next in section 2 we briefly discuss the method of Moss and
Rabani for deriving an algorithm for the budget problem from that for PCST. We
then explain and analyze our algorithm for PCSF in section 2.2. Section 3 discusses
our trimming procedure and how it leads to improved results for budgeted problems.

4Let T denote the sets of vertices purchased by the algorithm of [12]. It is guaranteed that
c(T ) + log(n)π(V \T ) ≤ log(n)OPT.

5An (α, β)-bicriteria approximation algorithm for the budgeted problem finds a tree with total
prize at least a 1

β
fraction of that of the optimal solution and total cost at most an α factor of the

budget.
6The O(log2 n)-approximation algorithm can be derived from the results in [9] with some effort,

not as explicitly as cited by Moss and Rabani [13].
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Finally, sections 4 to 6 contain minor results for hardness of NW and reductions
between special cases of the quota problem.

2. The PCSF problem. The starting point of the algorithm of Moss and Ra-
bani [13] is a standard LP relaxation for the rooted version. For the quota and bud-
geted problems they show that any (fractional) feasible solution can be approximated
by a convex combination of sets of nodes connected (integrally) to the root. Given the
support of such a convex combination, it follows from an averaging argument that a
proper set can be found. Thus the problem comes down to finding the support of the
convex combination. They show that given a black-box algorithm which solves the
PCST problem with the approximation factor O(log n), one can obtain the support
in polynomial time.

The main result of this section is a very simple, and maybe more elegant, al-
gorithm for the classical problem of PCSF (and thus PCST). As mentioned before,
using moats and having a pruning phase lead to the main difficulty in the analysis of
previous algorithms. These seem to be a necessary evil for achieving a tight constant
approximation factor for the edge-weighted variant. Surprisingly, we show neither is
needed in the node-weighted variant. Instead of moats, we use dual disks which are
centered on a single terminal and we do not need a pruning phase.

2.1. Preliminaries. Consider a graph G = (V,E) with a node-weight function
c : V → R≥0. For a subset S ⊆ V , let c(S) :=

∑
v∈S c(v). In the SF problem, given a

set of demands L = 〈(s1, t1), . . . , (sh, th)〉, the goal is to find a set of vertices X such
that for every demand i ∈ [h], si and ti are connected in G[X]. The vertices si and ti
are denoted as the endpoints of the demand i. In PCSF a penalty (prize) πi ∈ R≥0 is
associated with every demand i ∈ [h]. If the endpoints of a demand are not connected
in the solution, we need to pay the penalty of the demand. The objective cost of a
solution X ⊆ V is

PCSF(X) = c(X) +
∑

i∈[h]:i is not satisfied

πi .

A terminal is a vertex which is an endpoint of a demand. Let T denote the set
of terminals. We may assume that the cost of a terminal is zero. We also assume the
endpoints of all demands are different7 (thus |T | = 2h). For a pair of vertices u and v
and a cost function c, let dc(u, v) denote the length of the shortest path with respect
to c connecting u and v, including the cost of endpoints.

For a set of vertices S let δ(S) denote the set of vertices that are not in S but have
neighbors in S. A set S separates a demand i if exactly one of si and ti is in S. Let
Si denote the collection of sets separating the demand i and let S =

⋃
i Si. For a set

S, define the penalty of S as half of the total penalty of demands separated by S, i.e.,
πL(S) = 1

2

∑
i:S∈Si πi. We may drop the index L when there is no ambiguity. The

PCSF problem can be formulated as the following standard integer program (IP):

Minimize
∑

v∈V \T

c(v)x(v) +
∑
S∈S

π(S)z(S),

∀i ∈ [h], S ∈ Si
∑

v∈δ(S)

x(v) +
∑

R|S⊆R∈Si

z(R) ≥ 1,

x(v), z(S) ∈ {0, 1} .

7Both assumptions are without loss of generality. For every demand (si, ti), attach a new vertex
si of cost zero to si and similarly attach a new vertex ti of cost zero to ti. Now interpret i as the
demand between si and ti. The optimal cost does not change.
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This IP is indeed the standard formulation studied in the literature. Given a combi-
natorial solution X ⊆ V to the PCSF problem one can easily make a feasible solution
x to the IP with the same objective value as PCSF(X): we first assume T ⊆ X
since the cost of a terminal is zero. For every vertex v ∈ X, we set x(v) = 1. This
implies

∑
v∈δ(S) x(v) ≥ 1 for every set S that separates a connected component of

G[X], hence, satisfying the IP constraint for such S. Now consider a set S ∈ Si where
S does not separate any connected component. Therefore, there exists a connected
component CC of G[X] containing an endpoint of demand i such that CC ∩X = φ.
To satisfy the IP constraint for all such S, we set z(V \CC) = 1 for every connected
component CC of G[X]. This would satisfy

∑
R|S⊆R∈Si z(R) ≥ 1.

One can further confirm that the cost of the IP solution 〈x, z〉 is exactly PCSF(X):
we buy the same vertices and pay

∑
v∈V \T c(v)x(v). For the penalty cost, the IP so-

lution pays
∑
S∈S π(S)z(S) =

∑
i

∑
S∈Si

πi

2 z(S). Consider an unsatisfied demand i
with si (resp., ti) in a connected componnent CC(si) (resp., CC(ti)). There are ex-
actly two sets S ∈ Si with z(S) = 1: V \CC(si) and V \CC(ti). Therefore the overall
penalty of the solution is exactly the total penalty of unsatisfied demands.

The converse of the above argument can be used to show that any feasible solution
〈x, z〉 of the IP corresponds to a solution X ⊆ V for the PCSF problem with at
most the same cost. One can obtain a relaxed LP from IP by relaxing the integral
constraint x(v), z(S) ∈ {0, 1} to x(v), z(S) ∈ [0, 1]. Let OPT denote the objective
value of the optimal solution for the relaxed LP. The following is the dual program D
corresponding to the LP:

Maximize
∑
S∈S

y(S)(D)

∀v ∈ V
∑

S∈S:v∈δ(S)

y(S) ≤ c(v),

∀S ∈ S
∑
S′⊆S

∑
i:S,S′∈Si

yi(S
′) ≤ π(S),

yi(S) ≥ 0,y(S) =
∑
i:S∈Si

yi(S) .

In the case of the ST, the dual variables are defined w.r.t. a set S. However, in the ST,
the dual variables are in the form yi(S), i.e., they are defined based on a demand as
well. This has been one source of the complexity of previous primal-dual algorithms
for the ST problems. Interestingly, in our approach, we only need to work with a
simplified dual constructed as follows.

Cores and simplified duals. Let c and L denote a node-weight function and a set
of demands, respectively. Let Zc denote the set of vertices with zero cost.8 We note
that the terminals are in Zc. A set C ⊆ V is a core if C is a connected component
of G[Zc] and contains a terminal (i.e., an endpoint of a demand in L). Let S(c,L) be
the collection of sets separating one core from the other cores, i.e., a set S is in S(c,L)
if S contains a core but has no intersection with other cores. For a set S ∈ S(c,L),
let core(S) denote the core inside S. Note that πL(S) = πL(core(S)). A simplified

8Our algorithm in the next section runs in iterations in which we reduce the weights of nodes
purchased in previous iterations to zero. Therefore, we need a careful and rigid handling of zero-
weight nodes.
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Fig. 1. A graphical representation of a disk of radius 10. The vertex at the center of the disk
is an endpoint of a demand. The numbers show the cost of vertices. The innermost circle contains
the core, while the outermost circle contains the continent and the boundary.

dual w.r.t. c and L is the following program D(c,L):

Maximize
∑
S∈S

y(S),(D(c,L))

∀v ∈ V
∑

S∈S(c,L):v∈δ(S)

y(S) ≤ c(v),(C1)

∀S ∈ S(c,L)
∑

S′:core(S)⊆S′⊆S

y(S′) ≤ πL(S),(C2)

y(S) ≥ 0 .

Observe that S(c,L) ⊆ S. Indeed D(c,L) is the same as D with only (much)
fewer variables. Thus the program D(c,L) is only more restricted than D. In the rest
of the paper, unless specified otherwise, by a dual we mean a simplified dual. When
clear from the context, we may omit the indices c and L.

Disks. Consider a dual vector y initialized to zero. A disk of radius R centered at
a terminal t is the dual vector obtained from the following process: initialize the set
S to the core containing t. Increase y(S) until for a vertex u the dual constraint C1
becomes tight. Add u to S and repeat with the new S. Stop the process when the
total growth (i.e., sum of the dual variables) reaches R. A disk is valid if y is feasible.
In what follows, by a disk we mean a valid disk unless specified otherwise.

A vertex v is inside the disk if dc(t, v) is strictly less than R. The continent of a
disk is the set of vertices inside the disk. Further, we say a vertex v is on the boundary
of a disk if it is not inside the disk but has a neighbor u such that dc(t, u) ≤ R. Note
that u is not necessarily inside the disk. See Figure 1 for a graphical representation
of a disk. The following facts about a disk of radius R centered at a terminal t can
be derived from the definition:

Fact 1. The (dual) objective value of the disk is exactly R.
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Fact 2. For every vertex inside the disk, the dual constraint C1 is tight.

Fact 3. If a set S does not include the center, then y(S) = 0. Further, if S is
not a subset of the continent, then y(S) = 0.

Let y1, . . . ,yk denote a set of disks. The union of the disks is simply a dual vector
y such that y(S) =

∑
i yi(S) for every set S ⊆ S. A set of disks are nonoverlapping if

their union is a feasible dual solution (i.e., both sets of constraints C1 and C2 hold).

Proposition 1. Let y be the union of a set of nonoverlapping disks y1, . . . ,yk.
A vertex inside a disk cannot be on the boundary of another disk.

Proof. If a vertex v is inside a disk yi, the corresponding dual constraint C1 is
tight for yi (Fact 2). Thus for any set S such that v ∈ δ(S), the variable y−i(S) :=∑
j∈[k]\{i} yj(S) has to be zero, otherwise y won’t be feasible. Hence, v cannot be

in the continent of another disk. On the other hand, since the distance between v
and the center is strictly less than the radius, there exists a set S∗ containing v with
positive dual value in yi. By Fact 3, S∗ is a subset of the continent of yi.

Now by contradiction, assume that v is on the boundary of another disk yj . Let
cj and rj denote the center and radius of yj , respectively. By definition, v has a
neighbor u such that d(cj , u) ≤ rj . The dual constraint C1 for u is already tight
in yj . Hence, the same argument as above holds for u as well: u cannot be in the
continent of yi. Therefore, u lies in δ(S∗). Since yi(S

∗) is positive, the dual vector
yi + yj cannot be feasible, which is a contradiction.

Proposition 1 implies that in the union of a set of nonoverlapping disks, the
continents are pairwise far from each other. This intuition leads to the following.

Lemma 1. Suppose T ′ is a maximal subset of terminals such that the distance
between every pair of them is nonzero. Let R denote the maximum radius such that
the |T ′| disks of radius R centered at terminals in T ′ are nonoverlapping. Consider
the union of such disks. Either (i) the constraint C2 is tight for a continent or (ii)
the constraint C1 is tight for a vertex on the boundary of multiple disks.

Proof. Let y1, . . . ,y|T ′| denote the disks of radius R centered at the terminals in
T ′ with cores core1, . . . , core|T ′|. Increasing the radius of all disks by any ε > 0 creates
an infeasibility in their union y. Thus at least one of the following holds for y:

• The constraint C2 is tight for a set S containing a terminal, i.e.,
∑
S′⊆S y(S′)

= π(S) > 0. Let S be such a set with the smallest cardinality. Recall that
by Fact 3, yi(S

′) is positive for a set S′ only if S′ contains the center of yi
and is a subset of the continent of the disk. We remove the zero terms from
both sides of the equality. The right-hand side would be the penalty of a
subset of the terminals, say T ′′. The left-hand side would be the sum over
dual variables y(S′)’s such that S′ is a subset of a continent of one of the
disks centered on T ′′ ∩ T ′. For each disk centered on a terminal i, we are
guaranteed that∑

S⊆continent of the disk

y(S) =
∑

S⊆continent of the disk

yi(S) <= π(corei).

Therefore if the inequality is tight overall, it has to be tight induced to any
disk in T ′′. Thus the smallest set S is indeed a subset of the continent of
a single disk. Now let S∗ be the continent of that disk. The sets S and S∗

share the same core, thus the right-hand sides of the constraint C2 for both
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are the same. However the left-hand side of the constraint for S∗ can only be
larger which leads to (i).

• For a vertex v the constraint C1 becomes infeasible if we grow every disk by
any ε > 0. The constraint for v is tight w.r.t. y. If the constraint for v is not
tight in any of the yi’s independently, then v is on the boundary of more than
one disk which leads to (ii). Otherwise assume the constraint for v is tight
in yi for an i ∈ [|T ′|].9 If we extend the radius by ε, v will be inside the ith
disk thus

∑
S|v∈δ(S) yi(S) will not change. However by the assumption about

v, the same summation for y, i.e.,
∑
S|v∈δ(S) y(S) will increase. Therefore a

neighbor of v is at most R far from the center of another disk, say that of
the jth disk. By definition, v is on the boundary of the jth disk. Further,
by Proposition 1, v cannot be inside the ith disk and so is on its boundary
which leads to (ii).

The final tool we need for the analysis of the algorithm states a precise relation
between the dual variables and the distance of a vertex on the boundary. The proof
is based on the analysis of the growth of a disk.

Lemma 2. Let v be a vertex on the boundary of a disk y of radius R centered at
a terminal t. We have

∑
S|v∈δ(S) y(S) = R− (dc(t, v)− c(v)).

Proof. Consider the continuous process of growing the disk during which we start
with a set S∗ (initialized to the core containing t), and we add the vertices to S∗

for which the constraint C1 becomes tight. Let 〈v0 = t, v1, . . . , vm〉 denote the set
of vertices in the continent or the boundary of the disk, sorted by their distance to
t. We prove by induction that for every i, (a)

∑
S|vi∈δ(S) y(S) = min{d(t, vi), R} −

(d(t, vi) − c(vi)) and (b) vi enters the growing set S∗ when the total growth of the
disk has reached d(t, vi). Note that given (a) for all vertices, (b) follows.

The base is trivial. Consider an arbitrary i > 0. Let vj be the closest neighbor of
vi to the center t, thus min{d(t, vi), R}− (d(t, vi)− c(vi)) = min{d(t, vi), R}− d(t, vj)
and j < i. The vertex vi falls on δ(S∗) when vj enters the growing set S∗. This
happens when the constraint for vj is tight. The induction hypothesis implies that
the total growth of the disk is d(t, vj). Any further growth of the disk contributes to∑
S|vi∈δ(S) y(S), until either of the following happen:
• The total growth reaches R. Thus∑

S|vi∈δ(S)

y(S) = R− d(t, vj) = R− (d(t, vi)− c(vi)).

• The constraint for vi becomes tight. Thus∑
S|vi∈δ(S)

y(S) = c(vi) = d(t, vi)− d(t, vj) = min{d(t, vi), R} − d(t, vj),

which completes the proof.

2.2. An algorithm for the PCSF problem. The algorithm finds the solution
X iteratively. Let Xi denote the set of vertices bought after iteration i where X0 is
the set of terminals. For every i, the modified cost function ci is a copy of c induced
by setting the cost of vertices in Xi−1 to zero, i.e., ci = c[Xi−1 → 0]. At iteration i
there is a set of active demands Li ⊆ L and the dual program Di = D(ci,Li). The

9For an integer x, let [x] denote the set {1, 2, . . . , x}.
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program Di is the simplified dual program w.r.t. the modified cost function and the
active demands. Note that Di is more restrictive than D: Di has the same set of
constraints, but the bounds on the packing constraints can only be smaller. Thus the
objective value of a feasible solution to Di is a lower bound for OPT. The algorithm
guarantees that for every i < j, Xi ⊆ Xj and Li is a superset of Lj .

The algorithm is as follows (see Algorithm 1). We initialize X0 = T , c1 = c, and
L1 = L. At iteration i, consider the cores formed w.r.t. ci and Li. Let Ti denote
a set which has exactly one terminal in each core (so the number of cores is |Ti|).
The algorithm finds the maximum radius Ri such that the |Ti| disks of radius Ri
centered at each terminal in Ti are nonoverlapping w.r.t. Di. By Lemma 1 either
the constraint C2 is tight for a continent S or the constraint C1 is tight for a vertex
v on the boundary of multiple disks. In the former, deactivate every demand with
exactly one endpoint in core(S), pay the penalty of such demands, and continue to
the next iteration with the remaining active demands. In the latter, let Lv denote the
centers of the disks whose boundaries contain v. For every terminal τ ∈ Lv buy the
shortest path w.r.t. ci connecting v to τ (and so to the core containing τ). Deactivate
a demand if its endpoints are now connected in the solution and continue to the next
iteration. The algorithm stops when there is no active demand remaining, in which
case it returns the final set of vertices bought by the algorithm.

Algorithm 1 The PCSF algorithm.

Input: A graph G = (V,E), a set of demands L with penalties, and a cost function
c.

1: Initialize X0 = T , L1 = L, c1 = c, and i = 1.
2: while |Li| > 0 do
3: Set ci = c[Xi−1 → 0] and construct the dual program Di with respect to ci and

Li.
4: Construct Ti by choosing an arbitrary terminal from each core.
5: Let Ri be the maximum radius such that putting a disk of radius Ri centered

at every terminal in Ti is feasible w.r.t. Di.
6: if the constraint C2 is tight for a continent S then
7: Set Xi = Xi−1.
8: Set Li+1 = Li\ {j ∈ [h]| either sj ∈ core(S) or tj ∈ core(S)}.
9: else

10: Find a vertex v on the boundary of multiple disks for which constraint C1 is
tight.

11: Let Lv denote the centers of the disks whose boundaries contain v.
12: Initialize Xi = Xi−1.
13: for all τ ∈ Lv do
14: Add the shortest path (w.r.t. ci) between τ and v to Xi.
15: Set Li+1 = Li\ {j ∈ [h]|dci+1(sj , tj) = 0}.
16: i = i+ 1.
17: Output Xi−1.

We bound the objective cost of the algorithm in each iteration separately. The
following theorem shows that the fraction of OPT we incur at each iteration is pro-
portional to the reduction in the number of cores after the iteration.

Theorem 2. The approximation ratio of Algorithm 1 is at most 2H2h, where H2h

is the (2h)th harmonic number.
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Proof. Observe that at each iteration, a core is a connected component of the
solution which contains an endpoint of at least one active demand. We distinguish
between two types of iterations: in Type I, line 8 of Algorithm 1 is executed while in
Type II, line 15 is executed.

Observe that a demand is deactivated either at line 8 or at line 15. In the latter,
the endpoints of a demand are indeed connected in the solution. Thus we only need
to pay the penalty of a demand if it is deactivated in an iteration of Type I. Recall
that at line 8, the penalty of core(S) is half the total penalty of demands cut by S.
Thus the total penalty we incur at that line is exactly 2πLi

(S)
We now break the total objective cost of the algorithm into a payment Pi for each

iteration i as follows:

Pi =

{
2πLi

(S) for Type I iterations executing line 8 with the continent S,
c(Xi)− c(Xi−1) for Type II iterations.

Recall that |Ti| is the number of cores at iteration i. Observe that by Fact 1, at
iteration i the total dual vector has value Ri|Ti|. By the weak duality Ri ≤ OPT

|Ti| . For

every i ≥ 1, let hi = |Ti| − |Ti+1| denote the reduction in the number of cores after
the iteration i.

Claim 1. Pi ≤ 2hiRi for every iteration i.

Proof. Fix an iteration i. Let y denote the union of disks of radius Ri centered
at Ti. We distinguish between the two types of iteration:

• Type I. At line 8, by deactivating all the demands crossing a core, we essen-
tially remove that core. Thus in such an iteration hi = 1. The objective cost
of the iteration is 2πLi

(S). On the other hand, the constraint C1 is tight
for S, i.e.,

∑
S′⊆S y(S) = πLi

(S). By Facts 1 and 3, the radius Ri equals∑
S′⊆S y(S). Therefore the objective cost is at most 2hiRi.

• Type II. At line 15, we connect |Lv| cores to each other, thus reducing the
number of cores in the next iteration by at least hi ≥ |Lv| − 1.10 Recall that
|Lv| ≥ 2 and hence hi ≥ 1. The total cost of connecting terminals in Lv to
v is bounded by ci(v) plus, for every τ ∈ Lv, the cost of the path connecting
τ to v excluding ci(v). Thus Pi ≤ ci(v) +

∑
τ∈Lv

(dci(τ, v) − ci(v)). Now we
write the equation in Lemma 2 for every disk centered at a terminal in Lv:

|Lv|Ri =
∑
τ∈Lv

[dci(τ, v)− ci(v) +
∑

S|v∈δ(S),τ∈S

y(S)]

=
∑
τ∈Lv

[dci(τ, v)− ci(v)] + ci(v) ≥ Pi ,

where the last equality follows since the constraint C1 is tight for v. Since the
disks are nonoverlapping, by Fact 3, y(S) is positive only if it contains a single
terminal of Lv. This completes the proof since Pi ≤ |Lv|Ri ≤ (hi + 1)Ri ≤
2hiRi.

Let X be the final solution of the algorithm. Note that |Ti+1| = |Ti| − hi and
|T1| ≤ |T |. A simple calculation shows

PCSF(X) ≤
∑
i

Pi ≤
∑
i

2hiRi ≤ 2OPT
∑
i

hi
|Ti|
≤ 2OPT ·H|T |.

10In the special case that every endpoint in the cores become connected to the other endpoint of
its demand, hi = |Lv |; otherwise hi = |Lv | − 1.
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3. The budgeted ST problem. In this section we consider the budgeted prob-
lem in the node-weighted ST setting. Recall that for a vertex v ∈ V , we denote the
prize and the cost of the vertex by π(v) and c(v), respectively. First we generalize the
trimming process of Guha et al. [9] which reduces the budget violation of a solution
while preserving the prize-to-cost ratio. We use this process to obtain a bicriteria
approximation algorithm for the rooted version in section 3.1. Next, in section 3.2
we consider the unrooted version. By providing a structural property of near-optimal
solutions, we propose an algorithm which achieves a logarithmic approximation factor
without violating the budget constraint, improving on the previous result of Guha et
al. [9] which obtains an O(log2 n)-approximation algorithm without violation.

In what follows, for a rooted tree T we assume a subtree rooted at a vertex v
consists of all vertices whose path to the root of T passes through v. The set of strict
subtrees of T consists of all subtrees other than T itself. Further, the set of immediate
subtrees of T are the subtrees rooted at the children of the root of T .

3.1. The rooted budgeted problem. For a budget value B and a vertex r, a
graph is B-proper for the vertex r if the cost of reaching any vertex from r is at most
B. The following lemma shows a bicriteria trimming method.

Lemma 3. Let T be a subtree rooted at r with the prize-to-cost ratio γ. Suppose
the underlying graph is B-proper for r and for ε ∈ (0, 1] the cost of the tree is at least
εB
2 . One can find a tree T ∗ containing r with the prize-to-cost ratio at least ε

4γ such
that ε

2B ≤ c(T
∗) ≤ (1 + ε)B.

Proof. Consider T rooted at r. As an initial step, we repeatedly remove a subtree
of T if (i) the (prize-to-cost) ratio of the remaining tree is at least γ, and (ii) the
cost of the remaining tree is at least εB

2 . We repeat this until no such subtree can be
found.

If the current cost of T is at most (1 + ε)B we are done. Suppose it is not the
case. A subtree T ′ is rich if c(T ′) ≥ ε

2B and the ratio of T ′ and all its subtrees is at
least γ. Indeed the existence of a rich subtree proves the lemma.

Claim 2. Given a rich subtree T ′, the desired tree T ∗ can be found.

Proof. Find a rich subtree T ′′ ⊆ T ′ such that the strict subtrees of T ′′ are not
rich, i.e., c(T ′′) ≥ ε

2B while the cost of strict subtrees of T ′′ (if any exist) is less than
ε
2B. Let C denote the total cost of the immediate subtrees of T ′′. We distinguish
between two cases.

• If C < ε
2B, then we can connect the root of T ′′ directly to r. The cost of the

resulting tree is at most C + B ≤ (1 + ε)B. On the other hand, T ′′ is rich
thus the prize of T ′′ is at least γ

(
ε
2B
)
. Therefore the resulting tree has the

desired ratio γε
2(1+ε) ≥

γε
4 .

• If C ≥ ε
2B, we can pick a subset of immediate subtrees of T ′′ such that their

total cost is between ε
2B and εB. We connect these subtrees to the root by

picking the path from the root of T ′′ to r. Using the same argument as above,
one can show that the resulting tree has the desired properties.

It only remains to consider the case that no rich subtree exists. Since T is not
rich, the ratio of at least one subtree is less than γ. Find a subtree T ′ such that the
ratio of T ′ is less than γ while the ratio of all of its strict subtrees (if any exist) is at
least γ. Though the ratio of T ′ is low, we have not removed it in the initial step. Thus
the cost of T\T ′ is less than ε

2B. However, c(T ) > (1 + ε)B and thus the total cost of
immediate subtrees of T ′ is at least ε

2B. On the other hand the cost of an immediate
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subtree of T ′ is less than ε
2B, otherwise it would be a rich subtree. Therefore we

can pick a subset of immediate subtrees of T ′ such that their total cost is between
ε
2B and εB. We connect these subtrees by connecting the root of T ′ directly to r.
The resulting tree has the cost at most (1 + ε)B and the prize at least γ

(
ε
2B
)

which
completes the proof.

Moss and Rabani [13] give an O(log n)-approximation algorithm for the budgeted
problem which may violate the budget by a factor of two. Using Lemma 3 one can
trim such a solution to achieve a trade-off between the violation of budget and the
approximation factor .

Theorem 3. For every ε ∈ (0, 1] one can find a subtree T ⊆ G in polynomial

time such that c(T ) ≤ (1 + ε)B and the total prize of T is an Ω( ε2

logn ) fraction of
OPT.

Proof. First we make the graph B proper for the root r by simply discarding the
vertices which are farther than B from r. Note that these vertices cannot be a part
of an optimal solution. Now we first use the following theorem proved by Moss and
Rabani [13].

Theorem 12 of [13]. For an instance of the rooted budgeted problem, an O(log n)-
approximation solution can be found in polynomial time which uses at most twice the
budget.

By the above theorem, we can find a tree T ′ with π(T ′) ≥ OPT
O(logn) and c(T ′) ≤ 2B.

Suppose the cost of T ′ is more than (1+ε)B; otherwise we are done. Let γ(T ′) denote

the prize-to-cost ratio of T ′. Observe that γ(T ′) = π(T ′)
c(T ′) ≥

OPT
O(logn)·2B . By Lemma 3

we can trim T ′ to obtain a subtree T such that
• the prize-to-cost ratio of T is γ(T ) ≥ ε

4γ(T ′) ≥ εOPT
O(logn)B ;

• the cost of T is sandwiched between ε
2B and (1 + ε)B.

Therefore the cost of T does not violate the budget by much and π(T ) is at least

π(T ) ≥ γ(T )
( ε

2
B
)
≥ ε2OPT

O(log n)
.

3.2. The unrooted budgeted problem. We prove a stronger variant of Lemma
3 for the unrooted version. We show that if no single vertex is too expensive, one does
not need to violate the budget at all. The analysis is similar to that of Lemma 3. For
the sake of completeness, we present the proof here in detail.

Lemma 4. Let T be a tree with the prize-to-cost ratio γ. Suppose c(T ) ≥ B
2 and

the cost of every vertex of the tree is at most B
2 for a real number B. One can find a

subtree T ∗ ⊆ T with the prize-to-cost ratio at least γ
4 such that B

4 ≤ c(T
∗) ≤ B.

Proof. We make T rooted at an arbitrary vertex r. As the first pruning step,
we repeatedly discard a subtree if the ratio and the cost of the remaining tree does
not go below γ and B

4 , respectively. We stop when no such subtree can be found.
Suppose the current cost of T is more than B; otherwise we are done. As in Lemma 3,
a subtree T ′ is rich if the ratio of T ′ and all subtrees of T ′ is at least γ. Note that
one can easily check whether a subtree is rich.

First we show, given a rich subtree, we can easily find the solution. Observe that
all the subtrees of a rich subtree are also rich unless their cost is less than B

4 . Given a
rich subtree, let T ′ be its lowest rich subtree, i.e., the cost of any immediate subtree
of T ′ (if any exists) is less than B

4 . Now let C denote the total cost of all immediate
subtrees of T ′.
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• If C < B
4 (or no child exists), then c(T ′) ≤ 3B

4 since the cost of the root of

T ′ does not exceed B
2 . Thus T ′ satisfies the properties desired in the lemma.

Recall that T ′ is rich and thus its ratio is at least γ.
• If C ≥ B

4 , we can pick a subset of immediate subtrees of T ′ such that their

total cost is between B
4 and B

2 . This can be done since the cost of an imme-

diate subtree is at most B
4 . Let T ∗ be the tree formed by connecting these

subtrees to the root of T ′. Observe that c(T ∗) ≤ B and the total prize is at
least π(T ∗) ≥ γB4 . Therefore, the ratio of T ∗ is at least γ

4 .
It only remains to consider the case that T does not have a rich subtree. Since T is
not rich, a subtree of T has ratio less than γ. Let T ′ be a subtree with ratio less than
γ such that all strict subtrees of T ′ (if any exist) have ratio at least γ. Observe that
the cost of an immediate subtree of T ′ is less than B

4 , otherwise it would be a rich
subtree. On the other hand, we have not discarded T ′ in the first pruning step, hence,
c(T\T ′) < B

4 . Furthermore c(T ) > B, thus the total cost of immediate subtrees of

T ′ is at least B
4 . Now similarly to the previous argument, we can pick a subset of

immediate subtrees of T ′ such that their total cost is between B
4 and B

2 . The tree
formed by connecting these subtrees to the root of T ′ has the desired properties.

One may use arguments similar to that of Theorem 3 to derive an O(log n)-
approximation algorithm from Lemma 4 when the cost of a vertex is not too big. On
the other hand, if the cost of a vertex is more than half the budget, we can guess
that vertex and try to solve the problem with the remaining budget. However, one
obstacle is that this process may need to be repeated, i.e., the cost of another vertex
may be more than half the remaining budget. Thus we may need to continue guessing
many vertices in which case connecting them in an optimal manner would not be an
easy task. The following theorem indeed shows guessing one vertex is sufficient if one
is willing to lose an extra factor of two in the approximation guarantee.

Theorem 4. The unrooted budgeted problem admits an O(log n)-approximation
algorithm which does not violate the budget constraint.

Proof. We define two classes of subtrees: the flat trees and the saddled trees. A
tree is flat if the cost of every vertex of the tree is at most B

2 . For a tree T , let x be

the vertex of T with the largest cost. The tree T is saddled if c(x) > B
2 and the cost

of every other vertex of the tree is at most B−c(x)
2 . Let T ∗f denote the optimal flat

tree, i.e., a flat tree with the maximum prize among all the flat trees with the total
cost at most B. Similarly, let T ∗s denote the optimal saddled tree.

The proof is described in two parts. First we show the prize of the best solu-
tion between T ∗f and T ∗s is indeed within a constant factor of OPT. Next, we show
by restricting the optimum to any of the two classes, an O(log(n))-approximation
solution can be found in polynomial time. Therefore this would give us the desired
approximation algorithm.

Claim 3. Either π(T ∗f ) ≥ OPT
2 or π(T ∗s ) ≥ OPT

2 .

Proof. Let T ∗ denote the optimal tree. If T ∗ consists of only one vertex, then
clearly it is either a flat tree or a saddled tree and we are done. Now assume that T ∗

is neither flat nor saddled and it has at least two vertices. Let x and y denote the
vertices with the maximum cost and the second maximum cost in T ∗, respectively.
Since T ∗ is not flat we have c(x) > B

2 and c(y) ≤ B
2 . Neither are saddled, thus

c(y) > B−c(x)
2 . Observe that the cost of any other vertex of T ∗ is at most B−c(x)

2 .
Consider the path between y and x in T ∗. Let e denote the edge of the path which is
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adjacent to y. Removing e from T ∗ results in the two subtrees Ty and Tx containing
y and x, respectively. The cost of every vertex in Ty is at most c(y) ≤ B

2 , thus Ty is

flat. On the other hand the cost every vertex in Tx except x is at most B−c(x)
2 , thus

Tx is saddled. This completes the proof since one of the subtrees has at least half the
optimal prize π(T ∗).

Now we only need to restrict the algorithm to flat trees and saddled trees. Indeed
we can reduce the case of saddled trees to flat trees. We simply guess the maximum-
cost vertex x (by iterating over all vertices). We form a new instance of the problem
by reducing the budget to B− c(x) and the cost of x to zero. The cost of every other
vertex in T ∗s is at most half the remaining budget, thus we need to look for the best
flat tree in the new instance. Therefore it only remains to find an approximation
solution when restricted to flat trees.

We use Lemma 4 to find the desired solution for flat trees. A vertex with cost
more than half the budget cannot be in a flat tree, thus we remove all such vertices.
We may guess a vertex of the best solution and by using the algorithm of Moss and
Rabani [13]11 we can find an O(log n)-approximation solution which may use twice
the budget. Let T be the resulting tree with the total prize P . If c(T ) ≤ B we are
done. Otherwise by Lemma 4 we can trim T to obtain a tree with the cost at most
B and the prize at least P

32 which completes the proof.

4. Hardness of NW. Here we present the hardness result for the rooted NW
and directed NW problem given in Feigenbaum, Papadimitriou, and Shenker [6] with
slight modifications. We show that the NW is NP-hard to approximate within any
finite factor when restricted to the case of bounded degree graphs.

Theorem 5. For any ε, 0 < ε < 1, it is NP-hard to approximate12 the rooted,
whether directed or undirected, NW problem within a ratio ε.

Proof. Given an instance I of 3-SAT, we make an instance J of an NW problem
such that (i) if I is a yes-instance (i.e., it is satisfiable), then an ε-approximation
answer to J is strictly greater than ε; and (ii) if I is a no-instance, then the optimal
answer to J is at most ε. Let n and m be the number of variables and clauses in I,
respectively. Without loss of generality we assume that for every variable x there is a
clause x∨ x̄ in I, thus m ≥ n+ 1. We make the instance J with four layers of vertices
as follows:

• In the top layer, we put the root r with prize π(r) = ε.
• In the next layer, we put a vertex r′ with prize zero, connected to r via an

edge of cost mK − (n+ 1)−m for a fixed K ≥ n+ 1.
• The third layer contains 2n vertices, for every literal in I, all with prize zero

and connected to r′ via edges of unit cost.
• The last layer contains m vertices, one for every clause, all with prize K and

connected to the vertices corresponding to the literals it contains via edges
of unit cost.

In the case of directed NW, we orient all the edges from top to bottom.
We claim that if I is satisfiable, then NW (J) ≥ 1 + ε, otherwise NW (J) ≤ ε.

Note that in the former an ε-approximation algorithm would give us a solution with
NW at least ε(1 + ε) > ε and in the latter it would give us a solution with NW at
most ε, thus it can distinguish the satisfiability of I.

11See the statement of their theorem in the proof of Theorem 3.
12Algorithm A approximates function f within a ratio ε iff for every input instance x, εf(x) ≤

A(x) ≤ f(x)/ε. Since NW is a maximization problem, we can assume that A(x) ≤ f(x).
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First suppose I is satisfiable. Connect r to r′ and r′ to all literals satisfied in the
solution. Finally connect each clause to one of its satisfied literals. The total prize in
this solution is mK + ε, and the total cost is mK − (n+ 1)−m+ n+m = mK − 1.
Therfore the NW is 1 + ε, as desired.

Next we demonstrate that NW larger than ε implies a satisfying assignment for I.
Clearly such a solution buys the edge (r, r′) and thus incurs a big cost. Suppose this
solution includes vertices S in the third level and vertices T in the last level. The total
prize collected is ε+ |T |K. We now give a lower bound on the cost of the solution.

Note that the edge weights in the subgraph under r′ are all one. Any connected
subgraph with |S|+ |T |+ 1 vertices (including r′ itself) costs at least |S|+ |T |. The
maximum NW we could get is

ε+ |T |K − |S| − |T | − (mK − (n+ 1)−m)

= ε+ |T |(K − 1)−m(K − 1) + (n+ 1− |S|)
= ε+ (|T | −m)(K − 1) + (n+ 1− |S|),

which can be larger than ε only if |T | ≥ m, since |S| ≥ 1 and K ≥ n+ 1.
Therefore, to have a net worth strictly more than ε, we need to include all the

vertices in the fourth layer. On the other hand, observe that even with |T | = m, we
need |S| ≤ n to allow for net worth strictly greater than ε.

Recall that for every variable x there is a clause x∨x̄. To include the vertex corre-
sponding to this clause, we need to include at least one vertex corresponding to a literal
of x. Coupled with the above observation, this shows that for every variable x, the
vertex r′ would be connected to exactly one of the vertices corresponding to x and x̄.

Therefore a solution of NW more than ε corresponds to a satisfying assignment,
as desired. In fact, the NW of such a solution would be exactly 1 + ε.

5. Reductions for quota problems. In this section, we present two important
reductions that were missing in the literature. More specifically, we show that rooted
and unrooted k-MST and their k-ST versions are all equivalent and indeed equivalent
to the quota problem. (That these are simpler than the latter is easy.) These results
improve the approximation ratio of k-ST from 4 to 2. Ravi et al. [14] had provided a
reduction from k-ST to k-MST losing a factor of 2, whereas Chudak, Roughgarden,
and Williamson [4] had conjectured the presence of a (2+ ε)-approximation algorithm
while presenting one with an approximation ratio of 5.

This section deals with four special cases of the quota node-weighted ST problem.
We first claim that the rooted k-ST problem is equivalent to the quota problem,
with a factor of 1 + ε for a polynomially small ε. That the former is a special case
of the latter can be observed easily by setting vertex prizes to 0 and 1 for Steiner
and terminal nodes, respectively, and looking for a prize of at least k. To establish
the other direction of the reduction, given a graph G with prize π and cost c on its
vertices, as well as target prize value P , we produce an instance of k-ST as follows. We

assume all vertices of G are Steiner vertices and connect a vertex u to q(u) = dnπ(u)εP e
new terminal vertices of cost zero. In this instance we let k = bn/εc. Clearly any
solution to the quota instance turns into a solution of k-ST if one collects the terminals
immediately connected to the solution vertices. Next consider a solution to the k-
ST instance. We can assume without loss of generality that either none or all of the
terminals connected to one node are in the solution. The solution to the quota instance
simply includes all Steiner nodes whose all adjacent terminals are picked in the k-ST
instance. For such nodes we have

∑
u q(u) ≥ k. Note that there are at most n such
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Steiner nodes, and for each of them, say u, we have q(u) · εPn < εP
n + π(u). Therefore,

we get ( εPn )
∑
u q(u) < εP +

∑
u π(u). However, the solution guarantee (in the k-MST

instance) is that the left-hand side is at least ( εPn )k > ( εPn )(nε − 1) = P − εP
n . Putting

these two together and noting that n ≥ 1, we obtain
∑
u π(u) > P (1− 2ε).

The following two theorems show the other three problems are equivalent to k-ST
(and hence the quota problem).

Theorem 6. Let α, 0 < α < 1, be a constant. The following two statements are
equivalent:

(i) There is an α-approximation algorithm for the rooted k-MST problem.
(ii) There is an α-approximation algorithm for the unrooted k-MST problem.

Proof. We note that by running the rooted k-MST for every vertex, (i) immedi-
ately implies (ii). To prove that (ii) implies (i), we give a cost-preserving reduction
from rooted variant to unrooted variant. Let < G = (V,E), r, k > be an instance of
the rooted k-MST and let n = |V |. We add n vertices to G, all connected by edges
of cost zero to r. Let k′ = k + n and consider the solution to (unrooted) k′-MST on
the new graph. Since k′ > n − 1, a subtree of size k′ has to include r. Thus we can
assume that there exist an optimal solution which includes all the n extra vertices
plus a minimum-cost subtree of size k rooted at r. Hence the reduction preserves the
cost of the optimal solution.

Theorem 7. Let α, 0 < α < 1, be a constant. The following two statements are
equivalent:

(i) There is an α-approximation algorithm for the k-ST problem.
(ii) There is an α-approximation algorithm for the k-MST problem.

Proof. We note that one way is clear by definition. To prove that (ii) implies (i),
similarly to Theorem 6, we give a cost-preserving reduction from k-ST to k-MST.
Let < G = (V,E), T, k > be an instance of k-ST with the set of terminals T ⊆ V .
Let n = |V |. For every terminal vt ∈ T , add n vertices at distance zero of vt. Let
k′ = kn+k and consider the solution to k′-MST on the new graph. Any subtree with
at most k− 1 terminals has at most (k− 1)n+ n− 1 = kn− 1 vertices. Therefore an
optimal solution covers at least k terminals. Hence the reduction preserves the cost
of the optimal solution.

All the above proofs work, mutatis mutandis, for the edge-weighted case, too.

6. Integrality gap for budgeted ST. In this section we discuss the linear
programming approach to the budgeted problem. Let Pv denote the set of all paths
from root to vertex v. We may also assume that all the edges have unit length.
Consider the flow-based linear programming below:

Maximize
∑
v∈V

πv
∑
p∈Pv

fp,

∀e ∈ E, v ∈ V
∑

p∈Pv :e∈p
fp ≤ xe,(X)

∀v ∈ V
∑
p∈Pv

fp ≤ 1,(F)

∑
e∈E

xe ≤ B,(B)

fp,xe ≥ 0.
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Fig. 2. An example showing the unbounded gap of the LP for the budget problem.

Intuitively, for a path p ending at v, fp denotes the total flow reaching v through p
and xe denotes the maximum flow passing through the edge e. Constraint B keeps
the cost of edges in budget and constraint F restricts the total flow reaching a vertex.
One can also write a similar cut-based LP. However, we can show that even if G is a
tree, the gap between the fractional and integral solutions is unbounded. Let G be a
tree obtained by putting a star at the end of a long path of length B − 1 (see Figure
2). Let u1, . . . , uk denote the leaves other than the root which have 1 unit of profit.
Other vertices have zero profit. Clearly the optimal integral solution gains one unit
of profit. Let pi denote the path from r to ui. Consider a feasible fractional solution
where for every i, fpi = B

B+k−1 and, therefore, for every edge e, xe = B
B+k−1 . We note

that since there are B + k − 1 edges, we are not exceeding the budget. This shows
that the optimal fractional solution is at least kB

B+k−1 and, hence, in case of B ≥ k,
the gap between the fractional and the integral solution is k.
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